The extensive use of plastic products has exacerbated micro/nanoplastic (MPs/NPs) pollution in the atmosphere, increasing the incidence of respiratory diseases and lung cancer. This study investigates the uptake and cytotoxicity mechanisms of polystyrene (PS) NPs in human lung epithelial cells. Transcriptional analysis revealed significant changes in cell adhesion pathways following PS-NPs exposure. Integrin α5β1-mediated endocytosis was identified as a key promoter of PS-NPs entry into lung epithelial cells. Overexpression of integrin α5β1 enhanced PS-NPs internalization, exacerbating mitochondrial Ca2+ dysfunction and depolarization, which induced reactive oxygen species (ROS) production. Mitochondrial dysfunction triggered by PS-NPs led to oxidative damage, inflammation, DNA damage, and necrosis, contributing to lung diseases. This study elucidates the molecular mechanism by which integrin α5β1 facilitates PS-NPs internalization and enhances its cytotoxicity, offering new insights into potential therapeutic targets for microplastic-induced lung diseases.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.