Displaying all 3 publications

Abstract:
Sort:
  1. Chia SY, Khor BK, Tay YJ, Liew KF, Lee CY
    Bioorg Chem, 2023 Apr 02;135:106509.
    PMID: 37030107 DOI: 10.1016/j.bioorg.2023.106509
    Sulfuretin, a naturally occurring aurone is reported to inhibit macrophage and microglia activation. A series of aurones incorporating basic amines and lipophilic functionalities at ring A and/or ring B were synthesized to improve upon present sulfuretin activity towards targeting brain microglia while overcoming the blood-brain barrier (BBB). Evaluation of the ability of the aurones to inhibit lipopolysaccharide (LPS)-stimulated nitric oxide (NO) secretion by murine BV-2 microglia has identified several inhibitors showing significant NO reduction at 1 to 10 µM. Potent inhibitors were represented by aurones with bulky, planar moieties at ring A (3f) or at ring B (1e and 1f) and having a pendant piperidine at ring B (1a, 2a, 2b, and 3f). The active aurones inhibited the BV-2 microglia polarizing towards the M1 state as indicated by attenuation of IL-1β and TNF-α secretions in LPS-activated microglia but did not induce the microglia towards the M2 state. The aurones 2a, 2b, and 1f showed high passive BBB permeability in the parallel artificial membrane permeability assay (PAMPA) owing to their optimal lipophilicities. 2a, being non-cell toxic, BBB permeant and potent, represents a new lead for the development of aurones as inhibitors of activated microglia.
  2. Liang J, Ji F, Wang H, Zhu T, Rubinstein J, Worthington R, et al.
    Sci Total Environ, 2024 Feb 25;913:169525.
    PMID: 38141979 DOI: 10.1016/j.scitotenv.2023.169525
    Plastic pollution pervades both marine and terrestrial ecosystems, fragmenting over time into microplastics (MPs) and nano-plastics (NPs). These particles infiltrate organisms via ingestion, inhalation, and dermal absorption, predominantly through the trophic interactions. This review elucidated the impacts of MPs/NPs on the reproductive viability of various species. MPs/NPs lead to reduced reproduction rates, abnormal larval development and increased mortality in aquatic invertebrates. Microplastics cause hormone secretion disorders and gonadal tissue damage in fish. In addition, the fertilization rate of eggs is reduced, and the larval deformity rate and mortality rate are increased. Male mammals exposed to MPs/NPs exhibit testicular anomalies, compromised sperm health, endocrine disturbances, oxidative stress, inflammation, and granulocyte apoptosis. In female mammals, including humans, exposure culminates in ovarian and uterine deformities, endocrine imbalances, oxidative stress, inflammation, granulosa cell apoptosis, and tissue fibrogenesis. Rodent offspring exposed to MPs experience increased mortality rates, while survivors display metabolic perturbations, reproductive anomalies, and weakened immunity. These challenges are intrinsically linked to the transgenerational conveyance of MPs. The ubiquity of MPs/NPs threatens biodiversity and, crucially, jeopardizes human reproductive health. The current findings underscore the exigency for comprehensive research and proactive interventions to ameliorate the implications of these pollutants.
  3. Han M, Liang J, Wang K, Si Q, Zhu C, Zhao Y, et al.
    Sci Total Environ, 2024 Sep 03;953:176017.
    PMID: 39236815 DOI: 10.1016/j.scitotenv.2024.176017
    The extensive use of plastic products has exacerbated micro/nanoplastic (MPs/NPs) pollution in the atmosphere, increasing the incidence of respiratory diseases and lung cancer. This study investigates the uptake and cytotoxicity mechanisms of polystyrene (PS) NPs in human lung epithelial cells. Transcriptional analysis revealed significant changes in cell adhesion pathways following PS-NPs exposure. Integrin α5β1-mediated endocytosis was identified as a key promoter of PS-NPs entry into lung epithelial cells. Overexpression of integrin α5β1 enhanced PS-NPs internalization, exacerbating mitochondrial Ca2+ dysfunction and depolarization, which induced reactive oxygen species (ROS) production. Mitochondrial dysfunction triggered by PS-NPs led to oxidative damage, inflammation, DNA damage, and necrosis, contributing to lung diseases. This study elucidates the molecular mechanism by which integrin α5β1 facilitates PS-NPs internalization and enhances its cytotoxicity, offering new insights into potential therapeutic targets for microplastic-induced lung diseases.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links