Affiliations 

  • 1 Centre for Bioinformatics, School of Data Sciences, Perdana University, MAEPS Building, Jalan MAEPS Perdana, Serdang, Kuala Lumpur 50490, Malaysia
  • 2 Istanbul Faculty of Medicine, Istanbul University, Turgut Özal Millet St, Topkapi, Istanbul 34093, Türkiye
  • 3 Celik Sarayı, Yeni Elektrik Santral St. No:29/2, Meram, Konya 42090, Türkiye
  • 4 Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Ali Ihsan Kalmaz St., No.10 Beykoz, Istanbul 34820, Türkiye
  • 5 Nuffield Department of Clinical Medicine, University of Oxford, Old Road, Old Road Campus, Oxford OX3 7LF, United Kingdom
Brief Bioinform, 2024 Nov 22;26(1).
PMID: 39592151 DOI: 10.1093/bib/bbae607

Abstract

Sequence diversity is one of the major challenges in the design of diagnostic, prophylactic, and therapeutic interventions against viruses. DiMA is a novel tool that is big data-ready and designed to facilitate the dissection of sequence diversity dynamics for viruses. DiMA stands out from other diversity analysis tools by offering various unique features. DiMA provides a quantitative overview of sequence (DNA/RNA/protein) diversity by use of Shannon's entropy corrected for size bias, applied via a user-defined k-mer sliding window to an input alignment file, and each k-mer position is dissected to various diversity motifs. The motifs are defined based on the probability of distinct sequences at a given k-mer alignment position, whereby an index is the predominant sequence, while all the others are (total) variants to the index. The total variants are sub-classified into the major (most common) variant, minor variants (occurring more than once and of incidence lower than the major), and the unique (singleton) variants. DiMA allows user-defined, sequence metadata enrichment for analyses of the motifs. The application of DiMA was demonstrated for the alignment data of the relatively conserved Spike protein (2,106,985 sequences) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the relatively highly diverse pol gene (2637) of the human immunodeficiency virus-1 (HIV-1). The tool is publicly available as a web server (https://dima.bezmialem.edu.tr), as a Python library (via PyPi) and as a command line client (via GitHub).

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.