Displaying publications 1 - 20 of 85 in total

  1. Iqbal MJ, Faye I, Samir BB, Said AM
    ScientificWorldJournal, 2014;2014:173869.
    PMID: 25045727 DOI: 10.1155/2014/173869
    Bioinformatics has been an emerging area of research for the last three decades. The ultimate aims of bioinformatics were to store and manage the biological data, and develop and analyze computational tools to enhance their understanding. The size of data accumulated under various sequencing projects is increasing exponentially, which presents difficulties for the experimental methods. To reduce the gap between newly sequenced protein and proteins with known functions, many computational techniques involving classification and clustering algorithms were proposed in the past. The classification of protein sequences into existing superfamilies is helpful in predicting the structure and function of large amount of newly discovered proteins. The existing classification results are unsatisfactory due to a huge size of features obtained through various feature encoding methods. In this work, a statistical metric-based feature selection technique has been proposed in order to reduce the size of the extracted feature vector. The proposed method of protein classification shows significant improvement in terms of performance measure metrics: accuracy, sensitivity, specificity, recall, F-measure, and so forth.
    Matched MeSH terms: Computational Biology/methods*
  2. Chew TH, Joyce-Tan KH, Akma F, Shamsir MS
    Bioinformatics, 2011 May 1;27(9):1320-1.
    PMID: 21398666 DOI: 10.1093/bioinformatics/btr109
    birgHPC, a bootable Linux Live CD has been developed to create high-performance clusters for bioinformatics and molecular dynamics studies using any Local Area Network (LAN)-networked computers. birgHPC features automated hardware and slots detection as well as provides a simple job submission interface. The latest versions of GROMACS, NAMD, mpiBLAST and ClustalW-MPI can be run in parallel by simply booting the birgHPC CD or flash drive from the head node, which immediately positions the rest of the PCs on the network as computing nodes. Thus, a temporary, affordable, scalable and high-performance computing environment can be built by non-computing-based researchers using low-cost commodity hardware.
    Matched MeSH terms: Computational Biology/methods*
  3. Hawari AH, Mohamed-Hussein ZA
    BMC Bioinformatics, 2010;11:83.
    PMID: 20144236 DOI: 10.1186/1471-2105-11-83
    The development and simulation of dynamic models of terpenoid biosynthesis has yielded a systems perspective that provides new insights into how the structure of this biochemical pathway affects compound synthesis. These insights may eventually help identify reactions that could be experimentally manipulated to amplify terpenoid production. In this study, a dynamic model of the terpenoid biosynthesis pathway was constructed based on the Hybrid Functional Petri Net (HFPN) technique. This technique is a fusion of three other extended Petri net techniques, namely Hybrid Petri Net (HPN), Dynamic Petri Net (HDN) and Functional Petri Net (FPN).
    Matched MeSH terms: Computational Biology/methods*
  4. Chai LE, Loh SK, Low ST, Mohamad MS, Deris S, Zakaria Z
    Comput. Biol. Med., 2014 May;48:55-65.
    PMID: 24637147 DOI: 10.1016/j.compbiomed.2014.02.011
    Many biological research areas such as drug design require gene regulatory networks to provide clear insight and understanding of the cellular process in living cells. This is because interactions among the genes and their products play an important role in many molecular processes. A gene regulatory network can act as a blueprint for the researchers to observe the relationships among genes. Due to its importance, several computational approaches have been proposed to infer gene regulatory networks from gene expression data. In this review, six inference approaches are discussed: Boolean network, probabilistic Boolean network, ordinary differential equation, neural network, Bayesian network, and dynamic Bayesian network. These approaches are discussed in terms of introduction, methodology and recent applications of these approaches in gene regulatory network construction. These approaches are also compared in the discussion section. Furthermore, the strengths and weaknesses of these computational approaches are described.
    Matched MeSH terms: Computational Biology/methods*
  5. Ahmad M, Jung LT, Bhuiyan AA
    Comput Methods Programs Biomed, 2017 Oct;149:11-17.
    PMID: 28802326 DOI: 10.1016/j.cmpb.2017.06.021
    BACKGROUND AND OBJECTIVE: Digital signal processing techniques commonly employ fixed length window filters to process the signal contents. DNA signals differ in characteristics from common digital signals since they carry nucleotides as contents. The nucleotides own genetic code context and fuzzy behaviors due to their special structure and order in DNA strand. Employing conventional fixed length window filters for DNA signal processing produce spectral leakage and hence results in signal noise. A biological context aware adaptive window filter is required to process the DNA signals.

    METHODS: This paper introduces a biological inspired fuzzy adaptive window median filter (FAWMF) which computes the fuzzy membership strength of nucleotides in each slide of window and filters nucleotides based on median filtering with a combination of s-shaped and z-shaped filters. Since coding regions cause 3-base periodicity by an unbalanced nucleotides' distribution producing a relatively high bias for nucleotides' usage, such fundamental characteristic of nucleotides has been exploited in FAWMF to suppress the signal noise.

    RESULTS: Along with adaptive response of FAWMF, a strong correlation between median nucleotides and the Π shaped filter was observed which produced enhanced discrimination between coding and non-coding regions contrary to fixed length conventional window filters. The proposed FAWMF attains a significant enhancement in coding regions identification i.e. 40% to 125% as compared to other conventional window filters tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms.

    CONCLUSION: This study proves that conventional fixed length window filters applied to DNA signals do not achieve significant results since the nucleotides carry genetic code context. The proposed FAWMF algorithm is adaptive and outperforms significantly to process DNA signal contents. The algorithm applied to variety of DNA datasets produced noteworthy discrimination between coding and non-coding regions contrary to fixed window length conventional filters.

    Matched MeSH terms: Computational Biology/methods*
  6. Al-Khatib RM, Rashid NA, Abdullah R
    J. Biomol. Struct. Dyn., 2011 Aug;29(1):1-26.
    PMID: 21696223
    The secondary structure of RNA pseudoknots has been extensively inferred and scrutinized by computational approaches. Experimental methods for determining RNA structure are time consuming and tedious; therefore, predictive computational approaches are required. Predicting the most accurate and energy-stable pseudoknot RNA secondary structure has been proven to be an NP-hard problem. In this paper, a new RNA folding approach, termed MSeeker, is presented; it includes KnotSeeker (a heuristic method) and Mfold (a thermodynamic algorithm). The global optimization of this thermodynamic heuristic approach was further enhanced by using a case-based reasoning technique as a local optimization method. MSeeker is a proposed algorithm for predicting RNA pseudoknot structure from individual sequences, especially long ones. This research demonstrates that MSeeker improves the sensitivity and specificity of existing RNA pseudoknot structure predictions. The performance and structural results from this proposed method were evaluated against seven other state-of-the-art pseudoknot prediction methods. The MSeeker method had better sensitivity than the DotKnot, FlexStem, HotKnots, pknotsRG, ILM, NUPACK and pknotsRE methods, with 79% of the predicted pseudoknot base-pairs being correct.
    Matched MeSH terms: Computational Biology/methods*
  7. Ranganathan S, Schönbach C, Nakai K, Tan TW
    BMC Genomics, 2010;11 Suppl 4:S1.
    PMID: 21143792 DOI: 10.1186/1471-2164-11-S4-S1
    The 2010 annual conference of the Asia Pacific Bioinformatics Network (APBioNet), Asia's oldest bioinformatics organisation formed in 1998, was organized as the 9th International Conference on Bioinformatics (InCoB), Sept. 26-28, 2010 in Tokyo, Japan. Initially, APBioNet created InCoB as forum to foster bioinformatics in the Asia Pacific region. Given the growing importance of interdisciplinary research, InCoB2010 included topics targeting scientists in the fields of genomic medicine, immunology and chemoinformatics, supporting translational research. Peer-reviewed manuscripts that were accepted for publication in this supplement, represent key areas of research interests that have emerged in our region. We also highlight some of the current challenges bioinformatics is facing in the Asia Pacific region and conclude our report with the announcement of APBioNet's 100 BioDatabases (BioDB100) initiative. BioDB100 will comply with the database criteria set out earlier in our proposal for Minimum Information about a Bioinformatics and Investigation (MIABi), setting the standards for biocuration and bioinformatics research, on which we will report at the next InCoB, Nov. 27 - Dec. 2, 2011 at Kuala Lumpur, Malaysia.
    Matched MeSH terms: Computational Biology/methods
  8. Zeti AM, Shamsir MS, Tajul-Arifin K, Merican AF, Mohamed R, Nathan S, et al.
    PLoS Comput. Biol., 2009 Aug;5(8):e1000457.
    PMID: 19714208 DOI: 10.1371/journal.pcbi.1000457
    Matched MeSH terms: Computational Biology/methods*
  9. Tang PW, Chua PS, Chong SK, Mohamad MS, Choon YW, Deris S, et al.
    Recent Pat Biotechnol, 2015;9(3):176-97.
    PMID: 27185502
    BACKGROUND: Predicting the effects of genetic modification is difficult due to the complexity of metabolic net- works. Various gene knockout strategies have been utilised to deactivate specific genes in order to determine the effects of these genes on the function of microbes. Deactivation of genes can lead to deletion of certain proteins and functions. Through these strategies, the associated function of a deleted gene can be identified from the metabolic networks.

    METHODS: The main aim of this paper is to review the available techniques in gene knockout strategies for microbial cells. The review is done in terms of their methodology, recent applications in microbial cells. In addition, the advantages and disadvantages of the techniques are compared and discuss and the related patents are also listed as well.

    RESULTS: Traditionally, gene knockout is done through wet lab (in vivo) techniques, which were conducted through laboratory experiments. However, these techniques are costly and time consuming. Hence, various dry lab (in silico) techniques, where are conducted using computational approaches, have been developed to surmount these problem.

    CONCLUSION: The development of numerous techniques for gene knockout in microbial cells has brought many advancements in the study of gene functions. Based on the literatures, we found that the gene knockout strategies currently used are sensibly implemented with regard to their benefits.

    Matched MeSH terms: Computational Biology/methods
  10. Khor BY, Tye GJ, Lim TS, Choong YS
    PMID: 26338054 DOI: 10.1186/s12976-015-0014-1
    Protein structure prediction from amino acid sequence has been one of the most challenging aspects in computational structural biology despite significant progress in recent years showed by critical assessment of protein structure prediction (CASP) experiments. When experimentally determined structures are unavailable, the predictive structures may serve as starting points to study a protein. If the target protein consists of homologous region, high-resolution (typically <1.5 Å) model can be built via comparative modelling. However, when confronted with low sequence similarity of the target protein (also known as twilight-zone protein, sequence identity with available templates is less than 30%), the protein structure prediction has to be initiated from scratch. Traditionally, twilight-zone proteins can be predicted via threading or ab initio method. Based on the current trend, combination of different methods brings an improved success in the prediction of twilight-zone proteins. In this mini review, the methods, progresses and challenges for the prediction of twilight-zone proteins were discussed.
    Matched MeSH terms: Computational Biology/methods*
  11. Fotoohifiroozabadi S, Mohamad MS, Deris S
    J Bioinform Comput Biol, 2017 Apr;15(2):1750004.
    PMID: 28274174 DOI: 10.1142/S0219720017500044
    Protein structure alignment and comparisons that are based on an alphabetical demonstration of protein structure are more simple to run with faster evaluation processes; thus, their accuracy is not as reliable as three-dimension (3D)-based tools. As a 1D method candidate, TS-AMIR used the alphabetic demonstration of secondary-structure elements (SSE) of proteins and compared the assigned letters to each SSE using the [Formula: see text]-gram method. Although the results were comparable to those obtained via geometrical methods, the SSE length and accuracy of adjacency between SSEs were not considered in the comparison process. Therefore, to obtain further information on accuracy of adjacency between SSE vectors, the new approach of assigning text to vectors was adopted according to the spherical coordinate system in the present study. Moreover, dynamic programming was applied in order to account for the length of SSE vectors. Five common datasets were selected for method evaluation. The first three datasets were small, but difficult to align, and the remaining two datasets were used to compare the capability of the proposed method with that of other methods on a large protein dataset. The results showed that the proposed method, as a text-based alignment approach, obtained results comparable to both 1D and 3D methods. It outperformed 1D methods in terms of accuracy and 3D methods in terms of runtime.
    Matched MeSH terms: Computational Biology/methods*
  12. Lee Y, Roslan R, Azizan S, Firdaus-Raih M, Ramlan EI
    BMC Bioinformatics, 2016 Oct 28;17(1):438.
    PMID: 27793081
    BACKGROUND: Biological macromolecules (DNA, RNA and proteins) are capable of processing physical or chemical inputs to generate outputs that parallel conventional Boolean logical operators. However, the design of functional modules that will enable these macromolecules to operate as synthetic molecular computing devices is challenging.

    RESULTS: Using three simple heuristics, we designed RNA sensors that can mimic the function of a seven-segment display (SSD). Ten independent and orthogonal sensors representing the numerals 0 to 9 are designed and constructed. Each sensor has its own unique oligonucleotide binding site region that is activated uniquely by a specific input. Each operator was subjected to a stringent in silico filtering. Random sensors were selected and functionally validated via ribozyme self cleavage assays that were visualized via electrophoresis.

    CONCLUSIONS: By utilising simple permutation and randomisation in the sequence design phase, we have developed functional RNA sensors thus demonstrating that even the simplest of computational methods can greatly aid the design phase for constructing functional molecular devices.

    Matched MeSH terms: Computational Biology/methods*
  13. Abd Algfoor Z, Shahrizal Sunar M, Abdullah A, Kolivand H
    Brief Funct Genomics, 2017 03 01;16(2):87-98.
    PMID: 26969656 DOI: 10.1093/bfgp/elw002
    Metabolic pathways have become increasingly available for various microorganisms. Such pathways have spurred the development of a wide array of computational tools, in particular, mathematical pathfinding approaches. This article can facilitate the understanding of computational analysis of metabolic pathways in genomics. Moreover, stoichiometric and pathfinding approaches in metabolic pathway analysis are discussed. Three major types of studies are elaborated: stoichiometric identification models, pathway-based graph analysis and pathfinding approaches in cellular metabolism. Furthermore, evaluation of the outcomes of the pathways with mathematical benchmarking metrics is provided. This review would lead to better comprehension of metabolism behaviors in living cells, in terms of computed pathfinding approaches.
    Matched MeSH terms: Computational Biology/methods*
  14. Chan KL, Tatarinova TV, Rosli R, Amiruddin N, Azizi N, Halim MAA, et al.
    Biol. Direct, 2017 Sep 08;12(1):21.
    PMID: 28886750 DOI: 10.1186/s13062-017-0191-4
    BACKGROUND: Oil palm is an important source of edible oil. The importance of the crop, as well as its long breeding cycle (10-12 years) has led to the sequencing of its genome in 2013 to pave the way for genomics-guided breeding. Nevertheless, the first set of gene predictions, although useful, had many fragmented genes. Classification and characterization of genes associated with traits of interest, such as those for fatty acid biosynthesis and disease resistance, were also limited. Lipid-, especially fatty acid (FA)-related genes are of particular interest for the oil palm as they specify oil yields and quality. This paper presents the characterization of the oil palm genome using different gene prediction methods and comparative genomics analysis, identification of FA biosynthesis and disease resistance genes, and the development of an annotation database and bioinformatics tools.

    RESULTS: Using two independent gene-prediction pipelines, Fgenesh++ and Seqping, 26,059 oil palm genes with transcriptome and RefSeq support were identified from the oil palm genome. These coding regions of the genome have a characteristic broad distribution of GC3 (fraction of cytosine and guanine in the third position of a codon) with over half the GC3-rich genes (GC3 ≥ 0.75286) being intronless. In comparison, only one-seventh of the oil palm genes identified are intronless. Using comparative genomics analysis, characterization of conserved domains and active sites, and expression analysis, 42 key genes involved in FA biosynthesis in oil palm were identified. For three of them, namely EgFABF, EgFABH and EgFAD3, segmental duplication events were detected. Our analysis also identified 210 candidate resistance genes in six classes, grouped by their protein domain structures.

    CONCLUSIONS: We present an accurate and comprehensive annotation of the oil palm genome, focusing on analysis of important categories of genes (GC3-rich and intronless), as well as those associated with important functions, such as FA biosynthesis and disease resistance. The study demonstrated the advantages of having an integrated approach to gene prediction and developed a computational framework for combining multiple genome annotations. These results, available in the oil palm annotation database ( http://palmxplore.mpob.gov.my ), will provide important resources for studies on the genomes of oil palm and related crops.

    REVIEWERS: This article was reviewed by Alexander Kel, Igor Rogozin, and Vladimir A. Kuznetsov.

    Matched MeSH terms: Computational Biology/methods
  15. Ismail AM, Mohamad MS, Abdul Majid H, Abas KH, Deris S, Zaki N, et al.
    BioSystems, 2017 Dec;162:81-89.
    PMID: 28951204 DOI: 10.1016/j.biosystems.2017.09.013
    Mathematical modelling is fundamental to understand the dynamic behavior and regulation of the biochemical metabolisms and pathways that are found in biological systems. Pathways are used to describe complex processes that involve many parameters. It is important to have an accurate and complete set of parameters that describe the characteristics of a given model. However, measuring these parameters is typically difficult and even impossible in some cases. Furthermore, the experimental data are often incomplete and also suffer from experimental noise. These shortcomings make it challenging to identify the best-fit parameters that can represent the actual biological processes involved in biological systems. Computational approaches are required to estimate these parameters. The estimation is converted into multimodal optimization problems that require a global optimization algorithm that can avoid local solutions. These local solutions can lead to a bad fit when calibrating with a model. Although the model itself can potentially match a set of experimental data, a high-performance estimation algorithm is required to improve the quality of the solutions. This paper describes an improved hybrid of particle swarm optimization and the gravitational search algorithm (IPSOGSA) to improve the efficiency of a global optimum (the best set of kinetic parameter values) search. The findings suggest that the proposed algorithm is capable of narrowing down the search space by exploiting the feasible solution areas. Hence, the proposed algorithm is able to achieve a near-optimal set of parameters at a fast convergence speed. The proposed algorithm was tested and evaluated based on two aspartate pathways that were obtained from the BioModels Database. The results show that the proposed algorithm outperformed other standard optimization algorithms in terms of accuracy and near-optimal kinetic parameter estimation. Nevertheless, the proposed algorithm is only expected to work well in small scale systems. In addition, the results of this study can be used to estimate kinetic parameter values in the stage of model selection for different experimental conditions.
    Matched MeSH terms: Computational Biology/methods*
  16. Angers-Loustau A, Petrillo M, Bengtsson-Palme J, Berendonk T, Blais B, Chan KG, et al.
    F1000Res, 2018;7.
    PMID: 30026930 DOI: 10.12688/f1000research.14509.2
    Next-Generation Sequencing (NGS) technologies are expected to play a crucial role in the surveillance of infectious diseases, with their unprecedented capabilities for the characterisation of genetic information underlying the virulence and antimicrobial resistance (AMR) properties of microorganisms.  In the implementation of any novel technology for regulatory purposes, important considerations such as harmonisation, validation and quality assurance need to be addressed.  NGS technologies pose unique challenges in these regards, in part due to their reliance on bioinformatics for the processing and proper interpretation of the data produced.  Well-designed benchmark resources are thus needed to evaluate, validate and ensure continued quality control over the bioinformatics component of the process.  This concept was explored as part of a workshop on "Next-generation sequencing technologies and antimicrobial resistance" held October 4-5 2017.   Challenges involved in the development of such a benchmark resource, with a specific focus on identifying the molecular determinants of AMR, were identified. For each of the challenges, sets of unsolved questions that will need to be tackled for them to be properly addressed were compiled. These take into consideration the requirement for monitoring of AMR bacteria in humans, animals, food and the environment, which is aligned with the principles of a "One Health" approach.
    Matched MeSH terms: Computational Biology/methods*
  17. Axtner J, Crampton-Platt A, Hörig LA, Mohamed A, Xu CCY, Yu DW, et al.
    Gigascience, 2019 04 01;8(4).
    PMID: 30997489 DOI: 10.1093/gigascience/giz029
    BACKGROUND: The use of environmental DNA for species detection via metabarcoding is growing rapidly. We present a co-designed lab workflow and bioinformatic pipeline to mitigate the 2 most important risks of environmental DNA use: sample contamination and taxonomic misassignment. These risks arise from the need for polymerase chain reaction (PCR) amplification to detect the trace amounts of DNA combined with the necessity of using short target regions due to DNA degradation.

    FINDINGS: Our high-throughput workflow minimizes these risks via a 4-step strategy: (i) technical replication with 2 PCR replicates and 2 extraction replicates; (ii) using multi-markers (12S,16S,CytB); (iii) a "twin-tagging," 2-step PCR protocol; and (iv) use of the probabilistic taxonomic assignment method PROTAX, which can account for incomplete reference databases. Because annotation errors in the reference sequences can result in taxonomic misassignment, we supply a protocol for curating sequence datasets. For some taxonomic groups and some markers, curation resulted in >50% of sequences being deleted from public reference databases, owing to (i) limited overlap between our target amplicon and reference sequences, (ii) mislabelling of reference sequences, and (iii) redundancy. Finally, we provide a bioinformatic pipeline to process amplicons and conduct PROTAX assignment and tested it on an invertebrate-derived DNA dataset from 1,532 leeches from Sabah, Malaysia. Twin-tagging allowed us to detect and exclude sequences with non-matching tags. The smallest DNA fragment (16S) amplified most frequently for all samples but was less powerful for discriminating at species rank. Using a stringent and lax acceptance criterion we found 162 (stringent) and 190 (lax) vertebrate detections of 95 (stringent) and 109 (lax) leech samples.

    CONCLUSIONS: Our metabarcoding workflow should help research groups increase the robustness of their results and therefore facilitate wider use of environmental and invertebrate-derived DNA, which is turning into a valuable source of ecological and conservation information on tetrapods.

    Matched MeSH terms: Computational Biology/methods
  18. Muniyandi RC, Zin AM, Sanders JW
    BioSystems, 2013 Dec;114(3):219-26.
    PMID: 24120990 DOI: 10.1016/j.biosystems.2013.09.008
    This paper presents a method to convert the deterministic, continuous representation of a biological system by ordinary differential equations into a non-deterministic, discrete membrane computation. The dynamics of the membrane computation is governed by rewrite rules operating at certain rates. That has the advantage of applying accurately to small systems, and to expressing rates of change that are determined locally, by region, but not necessary globally. Such spatial information augments the standard differentiable approach to provide a more realistic model. A biological case study of the ligand-receptor network of protein TGF-β is used to validate the effectiveness of the conversion method. It demonstrates the sense in which the behaviours and properties of the system are better preserved in the membrane computing model, suggesting that the proposed conversion method may prove useful for biological systems in particular.
    Matched MeSH terms: Computational Biology/methods*
  19. Razmara J, Deris SB, Parvizpour S
    Comput. Biol. Med., 2013 Oct;43(10):1614-21.
    PMID: 24034753 DOI: 10.1016/j.compbiomed.2013.07.022
    The structural comparison of proteins is a vital step in structural biology that is used to predict and analyse a new unknown protein function. Although a number of different techniques have been explored, the study to develop new alternative methods is still an active research area. The present paper introduces a text modelling-based technique for the structural comparison of proteins. The method models the secondary and tertiary structure of proteins in two linear sequences and then applies them to the comparison of two structures. The technique used for pairwise comparison of the sequences has been adopted from computational linguistics and its well-known techniques for analysing and quantifying textual sequences. To this end, an n-gram modelling technique is used to capture regularities between sequences, and then, the cross-entropy concept is employed to measure their similarities. Several experiments are conducted to evaluate the performance of the method and compare it with other commonly used programs. The assessments for information retrieval evaluation demonstrate that the technique has a high running speed, which is similar to other linear encoding methods, such as 3D-BLAST, SARST, and TS-AMIR, whereas its accuracy is comparable to CE and TM-align, which are high accuracy comparison tools. Accordingly, the results demonstrate that the algorithm has high efficiency compared with other state-of-the-art methods.
    Matched MeSH terms: Computational Biology/methods*
  20. Abdullah A, Deris S, Mohamad MS, Anwar S
    PLoS ONE, 2013;8(4):e61258.
    PMID: 23593445 DOI: 10.1371/journal.pone.0061258
    One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data.
    Matched MeSH terms: Computational Biology/methods*
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links