Affiliations 

  • 1 Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
  • 2 Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, Universiti Malaya, Jalan Pantai Baharu, Kuala Lumpur, 59990, Malaysia
Macromol Rapid Commun, 2025 Jan;46(2):e2400481.
PMID: 39405501 DOI: 10.1002/marc.202400481

Abstract

This study presents a novel approach to developing eco-friendly dye-sensitized solar cells (DSSCs) using natural and renewable materials for gel polymer electrolytes (GPEs), reducing reliance on unsustainable solvents. Water is added to polar aprotic solvents, specifically ethylene carbonate/propylene carbonate (EC/PC), across various mass fractions (0:100 to 100:0). An amphiphilic hydroxypropyl cellulose (HPC) natural polymer is employed to formulate GPEs within this water-EC/PC cosolvent system, achieving successful gelation up to 50:50 mass fractions. Incorporating water reduced the gel strength and viscosity of the GPEs. Water acted as a plasticizer, enhancing the polymer chains mobility, and creating a more flexible and permeable structure. This increased ion diffusion coefficients and ion mobility, resulting in a maximum ionic conductivity of 18.17 mS cm-1. The highest efficiency achieved in DSSCs using these GPEs is 5.81%, with elevated short-circuit current density and reduced recombination losses. However, some compositions experienced syneresis, affecting their stability. The GPE with a 40:60 mass fraction exhibited superior long-term stability because it is free from syneresis, though it achieved a lower efficiency (4.83%), making it the best-performing sample. This work demonstrates the feasibility and benefits of using gel polymer electrolytes in an aqueous system, improving DSSC efficiency and sustainability.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.