Displaying publications 1 - 20 of 44 in total

  1. Ramesh S, Ajik S
    Med J Malaysia, 2012 Dec;67(6):629-30.
    PMID: 23770963 MyJurnal
    Scalp defects and lacerations present a reconstructive challenge to plastic surgeons. Many methods have been described from the use of skin grafting to rotation flaps. Here we present a method of closure of a contaminated scalp wound with the use of Kirschner wires. In our case, closure of scalp laceration was made possible with the use of 1.4 Kirschner wires and cable tie/ zip tie fasteners. The duration to closure of wound was 10 days. In reconstructing the scalp defect, this method was found to adhere to principles of scalp reconstruction. There were no post operative complications found from the procedure. On initial application on the edge of the wound, tension applied caused the K wires to cut through the wound edge. On replacement of K wires 1cm away from wound edge the procedure was not plagued by any further complication. In conclusion we find scalp closure with Kirschner wires are a simple and effective method for scalp wound closure.
  2. Ramesh, S., Shanti, R., Chin, S.F.
    ASM Science Journal, 2011;5(1):19-26.
    In this present study, a series of polymer electrolyte thin films were synthesized by incorporating different ratios of lithium triflate (LiCF3SO3) in a low molecular weight polyvinyl chloride (PVC) matrix by the solution casting technique. The incorporation of LiCF3SO3 suppressed the high degree of crystallinity in PVC enabling the system to possess an appreciable ionic conductivity. The ionic conductivity of the samples, with different LiCF3SO3 content, was determined by the aid of ac impedance spectroscopy. The highest ionic conductivity of 4.04  10–9 S cm–1 was identified for the composition of PVC: LiCF3SO3 (75:25). Further understanding of the ionic conductivity mechanism was based on temperature-dependent conductivity data which obeyed Arrhenius theory, indicating that the ionic conductivity enhancement was thermally assisted. The possible dipole-dipole interaction between the chemical constituents was confirmed with changes in cage peak, analysed using Fourier transform infrared spectroscopy.
  3. Viswanathan, R., Ramesh, S., Kamesh Kumar, D., Elango, N.
    This paper focuses on examining the ‘cutting zone temperature’ while performing turning operation
    on AZ91Mg alloy using cemented carbide tools. The regression model is developed by using the RSM
    techniques based on experimental results. It is revealed that the cutting speed (v) is the most dominant
    factor affecting cutting zone temperature. The developed models of cutting zone temperature sufficiently
    map within the range of the turning conditions considered. The adequacy and accuracy of the regression
    equation is justified through ANOVA. It is found that the optimal combinations of machining parameters
    minimize the cutting temperature.
  4. Ming NH, Ramesh S, Ramesh K
    Sci Rep, 2016 06 08;6:27630.
    PMID: 27273020 DOI: 10.1038/srep27630
    In this study, dye-sensitized solar cells (DSSCs) has been assembled with poly(1-vinylpyrrolidone-co-vinyl acetate) (P(VP-co-VAc)) gel polymer electrolytes (GPEs) which have been incorporated with binary salt and an ionic liquid. The potential of this combination was studied and reported. The binary salt system GPEs was having ionic conductivity and power conversion efficiency (PCE) that could reach up to 1.90 × 10(-3) S cm(-1) and 5.53%, respectively. Interestingly, upon the addition of the ionic liquid, MPII into the binary salt system the ionic conductivity and PCE had risen steadily up to 4.09 × 10(-3) S cm(-1) and 5.94%, respectively. In order to know more about this phenomenon, the electrochemical impedance studies (EIS) of the GPE samples have been done and reported. Fourier transform infrared studies (FTIR) and thermogravimetric analysis (TGA) have also been studied to understand more on the structural and thermal properties of the GPEs. The Nyquist plot and Bodes plot studies have been done in order to understand the electrochemical properties of the GPE based DSSCs and Tafel polarization studies were done to determine the electrocatalytic activity of the GPE samples.
  5. Khanmirzaei MH, Ramesh S, Ramesh K
    Sci Rep, 2015;5:18056.
    PMID: 26659087 DOI: 10.1038/srep18056
    Gel polymer electrolytes using imidazolium based ionic liquids have attracted much attention in dye-sensitized solar cell applications. Hydroxypropyl cellulose (HPC), sodium iodide (NaI), 1-methyl-3-propylimidazolium iodide (MPII) as ionic liquid (IL), ethylene carbonate (EC) and propylene carbonate (PC) are used for preparation of non-volatile gel polymer electrolyte (GPE) system (HPC:EC:PC:NaI:MPII) for dye-sensitized solar cell (DSSC) applications. The highest ionic conductivity of 7.37 × 10(-3) S cm(-1) is achieved after introducing 100% of MPII with respect to the weight of HPC. Temperature-dependent ionic conductivity of gel polymer electrolytes is studied in this work. XRD patterns of gel polymer electrolytes are studied to confirm complexation between HPC polymer, NaI and MPII. Thermal behavior of the GPEs is studied using simultaneous thermal analyzer (STA) and differential scanning calorimetry (DSC). DSSCs are fabricated using gel polymer electrolytes and J-V centeracteristics of fabricated dye sensitized solar cells were analyzed. The gel polymer electrolyte with 100 wt.% of MPII ionic liquid shows the best performance and energy conversion efficiency of 5.79%, with short-circuit current density, open-circuit voltage and fill factor of 13.73 mA cm(-2), 610 mV and 69.1%, respectively.
  6. Ramesh S, Shanti R, Morris E
    Carbohydr Polym, 2013 Jan 2;91(1):14-21.
    PMID: 23044100 DOI: 10.1016/j.carbpol.2012.07.061
    Polymer electrolytes were developed by solution casting technique utilizing the materials of cellulose acetate (CA), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and deep eutectic solvent (DES). The DES is synthesized from the mixture of choline chloride and urea of 1:2 ratios. The increasing DES content well plasticizes the CA:LiTFSI:DES matrix and gradually improves the ionic conductivity and chemical integrity. The highest conducting sample was identified for the composition of CA:LiTFSI:DES (28 wt.%:12 wt.%:60 wt.%), which has the greatest ability to retain the room temperature ionic conductivity over the entire 30 days of storage time. The changes in FTIR cage peaks upon varying the DES content in CA:LiTFSI:DES prove the complexation. This complexation results in the collapse of CA matrix crystallinity, observed from the reduced intensity of XRD diffraction peaks. The DES-plasticized sample is found to be more heat-stable compared to pure CA. Nevertheless, the addition of DES diminishes the CA:LiTFSI matrix's heat-resistivity but at the minimum addition the thermal stability is enhanced.
  7. Liew CW, Ramesh S
    Carbohydr Polym, 2015 Jun 25;124:222-8.
    PMID: 25839815 DOI: 10.1016/j.carbpol.2015.02.024
    Biopolymer electrolytes containing corn starch, lithium hexafluorophosphate (LiPF6) and ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6) are prepared by solution casting technique. Temperature dependence-ionic conductivity studies reveal Vogel-Tamman-Fulcher (VTF) relationship which is associated with free volume theory. Ionic liquid-based biopolymer electrolytes show lower glass transition temperature (Tg) than ionic liquid-free biopolymer electrolyte. X-ray diffraction (XRD) studies demonstrate higher amorphous region of ionic liquid-added biopolymer electrolytes. In addition, the potential stability window of the biopolymer electrolyte becomes wider and stable up to 2.9V. Conclusively, the fabricated electric double layer capacitor (EDLC) shows improved electrochemical performance upon addition of ionic liquid into the biopolymer electrolyte. The specific capacitance of EDLC based on ionic liquid-added polymer electrolyte is relatively higher than that of ionic liquid-free polymer electrolyte as depicted in cyclic voltammogram.
  8. Liew CW, Ramesh S
    Materials (Basel), 2014 May 21;7(5):4019-4033.
    PMID: 28788662 DOI: 10.3390/ma7054019
    Two different ionic liquid-based biopolymer electrolyte systems were prepared using a solution casting technique. Corn starch and lithium hexafluorophosphate (LiPF₆) were employed as polymer and salt, respectively. Additionally, two different counteranions of ionic liquids, viz. 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF₆) and 1-butyl-3-methylimidazolium trifluoromethanesulfonate (also known as 1-butyl-3-methylimidazolium triflate) (BmImTf) were used and studied in this present work. The maximum ionic conductivities of (1.47 ± 0.02) × 10(-4) and (3.21 ± 0.01) × 10(-4) S∙cm(-1) were achieved with adulteration of 50 wt% of BmImPF₆ and 80 wt% of BmImTf, respectively at ambient temperature. Activated carbon-based electrodes were prepared and used in supercapacitor fabrication. Supercapacitors were then assembled using the most conducting polymer electrolyte from each system. The electrochemical properties of the supercapacitors were then analyzed. The supercapacitor containing the triflate-based biopolymer electrolyte depicted a higher specific capacitance with a wider electrochemical stability window compared to that of the hexafluorophosphate system.
  9. Khanmirzaei MH, Ramesh S, Ramesh K
    J Nanosci Nanotechnol, 2020 Apr 01;20(4):2423-2429.
    PMID: 31492257 DOI: 10.1166/jnn.2020.17192
    Solid polymer electrolytes (SPEs) were prepared using rice starch as the polymer, sodium iodide (NaI) as the salt and 1-hexyl-3-methylimidazolium iodide (HMII) as the ionic liquid (IL). The solution casting technique was used for preparation of the PEs. The ionic conductivity and temperaturedependent properties of the PEs were measured and all the SPEs were found to follow the Arrhenius thermal activated model. Ionic conductivity increased as the percentage of ILs increased. The SPE containing 20% (wt) of HMII IL showed the highest ionic conductivity of 1.83×10-3 S/cm. Spectral and structural characterization of the PEs were performed by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), respectively. The results of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) indicate that the decomposition temperature (Tdc), glass transition temperatures (Tg) and melting points (Tm) shifted when complexation with HMII occurred. The PEs were used to fabricate dye-sensitized solar cells (DSSCs) and the DSSCs were analyzed under a 1-sun simulator. The SPE with the highest ionic conductivity displayed a short circuit current density (Jsc) of 9.07 (mA cm-2), open circuit voltage (Voc) of 0.58 (V), a fill factor (FF) of 0.65 and had the highest energy conversion efficiency of 3.42%.
  10. Ramesh S, Shanti R, Morris E
    Carbohydr Polym, 2012 Jan 04;87(1):701-706.
    PMID: 34663024 DOI: 10.1016/j.carbpol.2011.08.047
    A series of polymer electrolytes composed of corn starch (CS), lithium bis(trifluoromethanesulfonyl)imide (LITFSI) and deep eutectic solvent (DES) were fabricated by solution casting technique. The DES was synthesized from a mixture of choline chloride and urea at a molar ratio of 1:2. The addition of DES is crucial in enhancing the room temperature ionic conductivity by increasing the amorphous elastomeric phase in CS:LITFSI matrix. The ionic transport mechanism is improved and appreciable amount of ion conducting polymer electrolytes is produced. The highest ionic conductivity achieved for the polymer electrolyte composition CS:LiTFSI:DES (14wt.%:6wt.%:80wt.%) is 1.04×10-3Scm-1. The anomalies that were observed with the addition of DES upon formation of neutral ion multiples were visually revealed by the SEM micrographs. The possible dipole-dipole interaction between the constituents was visualized by the FTIR spectroscopy upon change in cage peaks.
  11. Prabhu AV, Ve RS, Talukdar J, Chandrasekaran V
    Oman J Ophthalmol, 2019 10 11;12(3):145-149.
    PMID: 31902987 DOI: 10.4103/ojo.OJO_190_2018
    AIM: The aim of this study is to estimate the prevalence of visual impairment among school-going children in Udupi district, Karnataka.

    MATERIALS AND METHODS: A cross-sectional study across eleven schools from both urban and rural parts of Udupi taluk was conducted to report the magnitude of visual impairment among the schoolchildren. Complex survey design was used in allocating the sample size through stratification and clustering. Totally 1784 schoolchildren between the age groups of 5 and 15 years participated in the study. Presenting visual acuity and objective refraction was measured using computerized logMAR acuity charts and Plusoptix A09 photorefractor, respectively. Manifest ocular deviation or squint was also recorded.

    RESULTS: The mean age of the students was found to be 10.62 ± 2.72 years. The prevalence of visual impairment, i.e., visual acuity worse than or equal to 20/40 in the better eye was found to be 4.32% (95% confidence interval: 3.38%, 5.26%). The prevalence rate was significantly higher among students from urban area (5.6%) compared to those from rural area (3.6%) (P = 0.011).

    CONCLUSION: Visual impairment was found to be 4.32% in the school-going population of Udupi district. Effective and user-friendly devices aided the visual deficit screening including refractive error and squint.

  12. Rajhans V, Mohammed CA, Ve RS, Prabhu A
    Educ Health (Abingdon), 2021 7 3;34(1):22-28.
    PMID: 34213440 DOI: 10.4103/efh.EfH_69_20
    Background: Current trends in health professions education are aligned to meet the needs of the millennial learner. The aim of this study was to identify learners' perceptions of an ongoing journal club (JC) activity in the optometry curriculum and evaluate the utility and efficiency of this method in promoting student learning.

    Methods: A qualitative approach with a phenomenological research design was adopted. The perceptions of undergraduate and postgraduate optometry students about JCs were captured using focus group discussions. A narrative thematic analysis was done using the verbatim transcripts and moderator's notes. Results are reported using "consolidated criteria for reporting qualitative research" guidelines.

    Results: A total of 33 optometry students participated in the study. Data analysis revealed three major themes related to (i) The ongoing practice of JC, (ii) student perceptions of JC and its relevance in facilitating student learning, and (iii) suggestions for modification of JC for achieving optimal educational outcomes.

    Discussion: Student feedback indicates that an instructional redesigning of JC is necessary, considering the characteristics and expectations of the current generation of learners and the rapid strides made in the field of educational technology. The recommendations provided are likely to resurrect an age-old approach that still has educational relevance if blended with collaborative learning formats and appropriate technology.

  13. Liew CW, Durairaj R, Ramesh S
    PLoS One, 2014;9(7):e102815.
    PMID: 25051241 DOI: 10.1371/journal.pone.0102815
    In this research, two systems are studied. In the first system, the ratio of poly (methyl methacrylate) (PMMA) and poly (vinyl chloride) (PVC) is varied, whereas in the second system, the composition of PMMA-PVC polymer blends is varied with dopant salt, lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) with a fixed ratio of 70 wt% of PMMA to 30 wt% of PVC. Oscillation tests such as amplitude sweep and frequency sweep are discussed in order to study the viscoelastic properties of samples. Elastic properties are much higher than viscous properties within the range in the amplitude sweep and oscillatory shear sweep studies. The crossover of G' and G'' is absent. Linear viscoelastic (LVE) range was further determined in order to perform the frequency sweep. However, the absence of viscous behavior in the frequency sweep indicates the solid-like characteristic within the frequency regime. The viscosity of all samples is found to decrease as shear rate increases.
  14. Ahmad WA, Ramesh SV, Zambahari R
    Singapore Med J, 2011 Jul;52(7):508-11.
    PMID: 21808962
    The ACute CORonary syndromes Descriptive study (ACCORD) is a prospective observational study that evaluates the management of acute coronary syndrome (ACS) in clinical practice and the use of antiplatelet agents in acute settings and after discharge. The secondary objective of this study was to obtain information on risk factors in a large cohort of patients with ACS.
    Comment in: Sachithanandan A. Malaysia-ACCORD study: tip of the cardiovascular iceberg--we must do better. Singapore Med J, 2011 Sep;52(9):702;
  15. Ramesh S, Serjius A, Wong TB, Jagjeet S, John R
    Med J Malaysia, 2008 Oct;63(4):343-5.
    PMID: 19385502 MyJurnal
    Penile reconstructive surgeries are performed mainly as radical treatment for conditions associated with congenital abnormalities of the urethra or penis, after penile trauma, penile cancer, short penis, corporal fibrosis and in cases of gender reassignment. We present here a method of penile reconstruction with a pre fabricated radial forearm free flap incorporating the segment of the radius for structural support.
  16. Mardziah CM, Sopyan I, Hamdi M, Ramesh S
    Med J Malaysia, 2008 Jul;63 Suppl A:79-80.
    PMID: 19024993
    Improvement of the mechanical properties of hydroxyapatite (HA) can be achieved by the incorporation of metal. In addition, incorporation of strontium ion into HA crystal structures has been proved effective to enhance biochemical properties of bone implant. In this research, strontium-doped HA powder was developed via a sol-gel method to produce extraordinarily fine strontium-doped HA (Sr-doped HA) powder. XRD measurement had shown that the powder contained hydroxyapatite phase only for all doping concentration except for 2%, showing that Sr atoms have suppressed the appearance of beta-TCP as the secondary phase. Morphological evaluation by FESEM measurement shows that the particles of the Sr-doped HA agglomerates are globular in shape with an average size of 1-2 microm in diameter while the primary particles have a diameter of 30-150 nm in average.
  17. Natasha AN, Sopyan I, Mel M, Ramesh S
    Med J Malaysia, 2008 Jul;63 Suppl A:85-6.
    PMID: 19024996
    The effect of Manganese (Mn) addition on the Vickers hardness and relative density of nanocrystalline hydroxyapatite (HA) dense bodies were studied. The starting Mn doped HA powders was synthesized via sol-gel method with Mn concentration varies from 2 mol% up to 15 mol% Mn. The Mn doped HA disc samples were prepared by uniaxial pressing at 200MPa and subsequently sintered at 1300 degrees C. Characterization was carried out where appropriate to determine the phases present, bulk density, Vickers hardness of the various content of Mn doped HA dense bodies. The addition of Mn was observed to influence the color appearance of the powders and dense bodies as well. Higher Mn concentration resulted in dark grey powders. It was also found that the hardness and relative density of the material increased as the Mn content increased and influenced by the crystallinity of the prepared Mn doped HA powders.
  18. Ramesh S, Yuen TF, Shen CJ
    PMID: 17600757
    Polymer electrolytes based on poly(ethylene oxide)-lithium triflate (PEO-LiCF3SO3) and poly(ethylene oxide)-lithium sulphate (PEO-Li2S4) were prepared by using solution casting method. Measurements of conductivity and dielectric were carried out on these films as a function of frequency at various temperatures. It was observed that PEO-LiCF3SO3 polymer electrolytes have higher conductivity. The interaction between PEO and Li salts were studied by Fourier transform infrared (FTIR).
  19. Ramesh S, Leen KH, Kumutha K, Arof AK
    Spectrochim Acta A Mol Biomol Spectrosc, 2007 Apr;66(4-5):1237-42.
    PMID: 16919998
    The polymer electrolytes composing of the blend of polyvinyl chloride-polymethyl methacrylate (PVC/PMMA) with lithium triflate (LiCF3SO3) as salt, ethylene carbonate (EC) and dibutyl phthalate (DBP) as plasticizers and silica (SiO2) as the composite filler were prepared. FTIR studies confirm the complexation between PVC/PMMA blends. The CCl stretching mode at 834 cm-1 for pure PVC is shifted to 847 cm-1 in PVC-PMMA-LiCF3SO3 system. This suggests that there is interaction between Cl in PVC with Li+ ion from LiCF3SO3. The band due to OCH3 at 1150 cm-1 for PVC-PMMA blend is shifted to 1168 cm-1 in PVC-PMMA-LiCF3SO3 system. This shift is expected to be due to the interaction between Li+ ion and the oxygen atom in PMMA. The symmetric vibration band and the asymmetric vibration band of LiCF3SO3 at 1033 and 1256 cm-1 shifted to 1075 and 1286 cm-1 in the DBP-EC plasticized PVC-PMMA-LiCF3SO3 complexes. The interaction between Li+ ions and SiO2 will lead to an increase in the number of free plasticizers (which does not interact with Li+ ions). When the silica content increases from 2% to 5%, the intensity of the peak at 896 cm-1 (due to the ring breathing vibration of free EC) increases in PVC-PMMA-LiCF3SO3-DBP-EC system.
  20. Omar FS, Duraisamy N, Ramesh K, Ramesh S
    Biosens Bioelectron, 2016 May 15;79:763-75.
    PMID: 26774092 DOI: 10.1016/j.bios.2016.01.013
    Nicotinamide Adenine Dinucleotide (NADH) is an important coenzyme in the human body that participates in many metabolic reactions. The impact of abnormal concentrations of NADH significantly causes different diseases in human body. Electrochemical detection of NADH using bare electrode is a challenging task especially in the presence of main electroactive interferences such as ascorbic acid (AA), uric acid (UA) and dopamine (DA). Modified electrodes have been widely explored to overcome the problems of poor sensitivity and selectivity occurred from bare electrodes. This review gives an overview on the progress of using conducting polymers, polyelectrolyte and its composites (co-polymer, carbonaceous, metal, metal oxide and clay) based modified electrodes for the sensing of NADH. In addition, developments on the fabrication of numerous conducting polymer composites based modified electrodes are clearly described.
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links