This study revealed Streptomyces bacillaris as an efficient biological agent for the removal of triphenylmethane (TPM) dyes. The isolate decolorized Malachite Green (MG), Methyl Violet (MV), Crystal Violet (CV), and Cotton Blue (CB) effectively. S. bacillaris in the treated dye solutions were analyzed for enzyme production, and the cell biomass was observed for functional groups and cell morphology. The treated dye solutions were also analyzed for degraded compounds and their toxicity. Results revealed high decolorization activities for MG (94.7%), MV (91.8%), CV (86.6%), CB (68.4%), attributed to both biosorption and biodegradation. In biosorption, dye molecules interacted with the hydroxyl, amino, phosphoryl, and sulfonyl groups present on the cell surface. Biodegradation was associated with induced activities of MnP and NADH-DCIP reductase, giving rise to various simpler compounds. The degraded compounds in the treated dyes were less toxic, as revealed by the significant growth of Vigna radiata in the phytotoxicity test. There were no significant changes in cell morphology before and after use in dye solutions, suggesting S. bacillaris is less susceptible to dye toxicity. This study concluded that S. bacillaris demonstrated effective removal of TPM dyes via biosorption and biodegradation, rendering the treated dyes less toxic than untreated dyes. Findings in this study enabled further explorations into the potential application of lesser-known actinobacteria (i.e. Streptomyces sp.) for dye removal.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.