Medical conditions and systemic diseases often manifest as distinct facial characteristics, making identification of these unique features crucial for disease screening. However, detecting diseases using facial photography remains challenging because of the wide variability in human facial features and disease conditions. The integration of artificial intelligence (AI) into facial analysis represents a promising frontier offering a user-friendly, non-invasive, and cost-effective screening approach. This review explores the potential of AI-assisted facial analysis for identifying subtle facial phenotypes indicative of health disorders. First, we outline the technological framework essential for effective implementation in healthcare settings. Subsequently, we focus on the role of AI-assisted facial analysis in disease screening. We further expand our examination to include applications in health monitoring, support of treatment decision-making, and disease follow-up, thereby contributing to comprehensive disease management. Despite its promise, the adoption of this technology faces several challenges, including privacy concerns, model accuracy, issues with model interpretability, biases in AI algorithms, and adherence to regulatory standards. Addressing these challenges is crucial to ensure fair and ethical use. By overcoming these hurdles, AI-assisted facial analysis can empower healthcare providers, improve patient care outcomes, and enhance global health.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.