PMID: 23366902 DOI: 10.1109/EMBC.2012.6346941

Abstract

Psoriasis is a common skin disorder with a prevalence of 0.6 - 4.8% around the world. The most common is plaques psoriasis and it appears as red scaling plaques. Psoriasis is incurable but treatable in a long term treatment. Although PASI (Psoriasis Area and Severity Index) scoring is recognised as gold standard for psoriasis assessment, this method is still influenced by inter and intra-rater variation. An imaging and analysis system called α-PASI is developed to perform PASI scoring objectively. Percentage of lesion area to the body surface area is one of PASI parameter. In this paper, enhanced imaging methods are developed to improve the determination of body surface area (BSA) and lesion area. BSA determination method has been validated on medical mannequin. BSA accuracies obtained at four body regions are 97.80% (lower limb), 92.41% (trunk), 87.72% (upper limb), and 83.82% (head). By applying fuzzy c-means clustering algorithm, the membership functions of lesions area for PASI area scoring have been determined. Performance of scoring result has been tested with double assessment by α-PASI area algorithm on body region images from 46 patients. Kappa coefficients for α-PASI system are greater than or equal to 0.72 for all body regions (Head - 0.76, Upper limb - 0.81, Trunk - 0.85, Lower limb - 0.72). The overall kappa coefficient for the α-PASI area is 0.80 that can be categorised as substantial agreement. This shows that the α-PASI area system has a high reliability and can be used in psoriasis area assessment.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.