Melanin is a major skin colour pigment that is made up of eumelanin (the dark brown-black colour) and pheomelanin (the light red-yellow colour) pigments. Skin-whitening products typically contain depigmentation agents that reduce the level of pigmentation by changing the pheomelanin-eumelanin production. Similarly, in skin pigment treatment of skin disorders, the melanin production is managed accordingly. To assess and improve treatment efficacy, it is important to have a measurement tool that is capable of determining the melanin types objectively. So far, the efficacy assessment is subjective. In this study, an inverse skin reflectance pigmentation analysis system that determines eumelanin and pheomelanin content is developed and evaluated in an observational study involving 36 participants with skin photo type IV.
This paper describes an image analysis technique that objectively measures skin repigmentation for the assessment of therapeutic response in vitiligo treatments. Skin pigment disorders due to the abnormality of melanin production, such as vitiligo, cause irregular pale patches of skin. The therapeutic response to treatment is repigmentation of the skin. However the repigmentation process is very slow and is only observable after a few months of treatment. Currently, there is no objective method to assess the therapeutic response of skin pigment disorder treatment, particularly for vitiligo treatment. In this work, we apply principal component analysis followed by independent component analysis to represent digital skin images in terms of melanin and haemoglobin composition respectively. Vitiligo skin areas are identified as skin areas that lack melanin (non-melanin areas). Results obtained using the technique have been verified by dermatologists. Based on 20 patients, the proposed technique effectively monitored the progression of repigmentation over a shorter time period of six weeks and can thus be used to evaluate treatment efficacy objectively and more effectively.
Incremental learning evolves deep neural network knowledge over time by learning continuously from new data instead of training a model just once with all data present before the training starts. However, in incremental learning, new samples are always streaming in whereby the model to be trained needs to continuously adapt to new samples. Images are considered to be high dimensional data and thus training deep neural networks on such data is very time-consuming. Fog computing is a paradigm that uses fog devices to carry out computation near data sources to reduce the computational load on the server. Fog computing allows democracy in deep learning by enabling intelligence at the fog devices, however, one of the main challenges is the high communication costs between fog devices and the centralized servers especially in incremental learning where data samples are continuously arriving and need to be transmitted to the server for training. While working with Convolutional Neural Networks (CNN), we demonstrate a novel data sampling algorithm that discards certain training images per class before training even starts which reduces the transmission cost from the fog device to the server and the model training time while maintaining model learning performance both for static and incremental learning. Results show that our proposed method can effectively perform data sampling regardless of the model architecture, dataset, and learning settings.
Diabetic retinopathy (DR) is a sight threatening complication due to diabetes mellitus that affects the retina. At present, the classification of DR is based on the International Clinical Diabetic Retinopathy Disease Severity. In this paper, FAZ enlargement with DR progression is investigated to enable a new and an effective grading protocol DR severity in an observational clinical study. The performance of a computerised DR monitoring and grading system that digitally analyses colour fundus image to measure the enlargement of FAZ and grade DR is evaluated. The range of FAZ area is optimised to accurately determine DR severity stage and progression stages using a Gaussian Bayes classifier. The system achieves high accuracies of above 96%, sensitivities higher than 88% and specificities higher than 96%, in grading of DR severity. In particular, high sensitivity (100%), specificity (>98%) and accuracy (99%) values are obtained for No DR (normal) and Severe NPDR/PDR stages. The system performance indicates that the DR system is suitable for early detection of DR and for effective treatment of severe cases.
Vitiligo is a cutaneous pigmentary disorder characterized by depigmented macules and patches that result from loss of epidermal melanocytes. Physician evaluates the efficacy of treatment by comparing the extent of vitiligo lesions before and after treatment based on the overall visual impression of the treatment response. This method is called the physician's global assessment (PGA) which is subjective. In this article, we present an innovative digital image processing method to determine vitiligo lesion area in an objective manner.
Diabetic retinopathy (DR) is a sight threatening complication due to diabetes mellitus that affects the retina. In this article, a computerised DR grading system, which digitally analyses retinal fundus image, is used to measure foveal avascular zone. A v-fold cross-validation method is applied to the FINDeRS database to evaluate the performance of the DR system. It is shown that the system achieved sensitivity of >84%, specificity of >97% and accuracy of >95% for all DR stages. At high values of sensitivity (>95%), specificity (>97%) and accuracy (>98%) obtained for No DR and severe NPDR/PDR stages, the computerised DR grading system is suitable for early detection of DR and for effective treatment of severe cases.
In this paper, we describe an image processing scheme to analyze and determine areas of skin that have undergone repigmentation in particular, during the treatment of vitiligo. In vitiligo cases, areas of skin become pale or white due to the lack of skin pigment called melanin. Vitiligo treatment causes skin repigmentation resulting in a normal skin color. However, it is difficult to determine and quantify the amount of repigmentation visually during treatment because the repigmentation progress is slow and moreover changes in skin color can only be discerned over a longer time frame typically 6 months. Here, we develop a digital image analysis scheme that can identify and determine vitiligo skin areas and repigmentation progression on a shorter time period. The technique is based on principal component analysis and independent component analysis which converts the RGB skin image into a skin image that represent skin areas due to melanin and haemoglobin only, followed by segmentation process. Vitiligo skin lesions are identified as skin areas that lack melanin (non-melanin areas). In the initial studies of 4 patients, the method has been able to quantify repigmentation in vitiligo lesion. Hence it is now possible to determine repigmentation progression objectively and treatment efficacy on a shorter time cycle.
An objective tool to quantify treatment response in vitiligo is currently lacking. This study aimed to objectively evaluate the treatment response in vitiligo by using a computerised digital imaging analysis system (C-DIAS) and to compare it with the physician's global assessment (PGA). Tacrolimus ointment 0.1% (Protopic; Astellas Pharma Tech,Toyama, Japan) was applied twice daily on selected lesions which were photographed every 6 weeks for 24 weeks. The primary efficacy end-point was the mean percentage of repigmentation (MPR), as assessed by the digital method (MPR-C-DIAS) or by the PGA. The response was categorised into none (0%), mild (1-25%), moderate (26-50%), good (51-75%) and excellent (76-100%).
Psoriasis is an incurable skin disorder affecting 2-3% of the world population. The scaliness of psoriasis is a key assessment parameter of the Psoriasis Area and Severity Index (PASI). Dermatologists typically use visual and tactile senses in PASI scaliness assessment. However, the assessment can be subjective resulting in inter- and intra-rater variability in the scores. This paper proposes an assessment method that incorporates 3D surface roughness with standard clustering techniques to objectively determine the PASI scaliness score for psoriasis lesions. A surface roughness algorithm using structured light projection has been applied to 1999 3D psoriasis lesion surfaces. The algorithm has been validated with an accuracy of 94.12%. Clustering algorithms were used to classify the surface roughness measured using the proposed assessment method for PASI scaliness scoring. The reliability of the developed PASI scaliness algorithm was high with kappa coefficients>0.84 (almost perfect agreement).
Psoriasis is a common skin disorder with a prevalence of 0.6 - 4.8% around the world. The most common is plaques psoriasis and it appears as red scaling plaques. Psoriasis is incurable but treatable in a long term treatment. Although PASI (Psoriasis Area and Severity Index) scoring is recognised as gold standard for psoriasis assessment, this method is still influenced by inter and intra-rater variation. An imaging and analysis system called α-PASI is developed to perform PASI scoring objectively. Percentage of lesion area to the body surface area is one of PASI parameter. In this paper, enhanced imaging methods are developed to improve the determination of body surface area (BSA) and lesion area. BSA determination method has been validated on medical mannequin. BSA accuracies obtained at four body regions are 97.80% (lower limb), 92.41% (trunk), 87.72% (upper limb), and 83.82% (head). By applying fuzzy c-means clustering algorithm, the membership functions of lesions area for PASI area scoring have been determined. Performance of scoring result has been tested with double assessment by α-PASI area algorithm on body region images from 46 patients. Kappa coefficients for α-PASI system are greater than or equal to 0.72 for all body regions (Head - 0.76, Upper limb - 0.81, Trunk - 0.85, Lower limb - 0.72). The overall kappa coefficient for the α-PASI area is 0.80 that can be categorised as substantial agreement. This shows that the α-PASI area system has a high reliability and can be used in psoriasis area assessment.