Displaying all 9 publications

Abstract:
Sort:
  1. Abbas AA, Guo X, Tan WH, Jalab HA
    J Med Syst, 2014 Aug;38(8):80.
    PMID: 24957396 DOI: 10.1007/s10916-014-0080-7
    In a computerized image analysis environment, the irregularity of a lesion border has been used to differentiate between malignant melanoma and other pigmented skin lesions. The accuracy of the automated lesion border detection is a significant step towards accurate classification at a later stage. In this paper, we propose the use of a combined Spline and B-spline in order to enhance the quality of dermoscopic images before segmentation. In this paper, morphological operations and median filter were used first to remove noise from the original image during pre-processing. Then we proceeded to adjust image RGB values to the optimal color channel (green channel). The combined Spline and B-spline method was subsequently adopted to enhance the image before segmentation. The lesion segmentation was completed based on threshold value empirically obtained using the optimal color channel. Finally, morphological operations were utilized to merge the smaller regions with the main lesion region. Improvement on the average segmentation accuracy was observed in the experimental results conducted on 70 dermoscopic images. The average accuracy of segmentation achieved in this paper was 97.21 % (where, the average sensitivity and specificity were 94 % and 98.05 % respectively).
    Matched MeSH terms: Dermoscopy/methods*
  2. Rasel MA, Abdul Kareem S, Kwan Z, Yong SS, Obaidellah U
    Comput Biol Med, 2024 Aug;178:108758.
    PMID: 38905895 DOI: 10.1016/j.compbiomed.2024.108758
    Melanoma, one of the deadliest types of skin cancer, accounts for thousands of fatalities globally. The bluish, blue-whitish, or blue-white veil (BWV) is a critical feature for diagnosing melanoma, yet research into detecting BWV in dermatological images is limited. This study utilizes a non-annotated skin lesion dataset, which is converted into an annotated dataset using a proposed imaging algorithm (color threshold techniques) on lesion patches based on color palettes. A Deep Convolutional Neural Network (DCNN) is designed and trained separately on three individual and combined dermoscopic datasets, using custom layers instead of standard activation function layers. The model is developed to categorize skin lesions based on the presence of BWV. The proposed DCNN demonstrates superior performance compared to the conventional BWV detection models across different datasets. The model achieves a testing accuracy of 85.71 % on the augmented PH2 dataset, 95.00 % on the augmented ISIC archive dataset, 95.05 % on the combined augmented (PH2+ISIC archive) dataset, and 90.00 % on the Derm7pt dataset. An explainable artificial intelligence (XAI) algorithm is subsequently applied to interpret the DCNN's decision-making process about the BWV detection. The proposed approach, coupled with XAI, significantly improves the detection of BWV in skin lesions, outperforming existing models and providing a robust tool for early melanoma diagnosis.
    Matched MeSH terms: Dermoscopy/methods
  3. Rasel MA, Kareem SA, Obaidellah U
    Comput Biol Med, 2024 Dec;183:109250.
    PMID: 39395346 DOI: 10.1016/j.compbiomed.2024.109250
    The color of skin lesions is a crucial diagnostic feature for identifying malignant melanoma and other skin diseases. Typical colors associated with melanocytic lesions include tan, brown, black, red, white, and blue-gray. This study introduces a novel feature: the number of colors present in lesions, which can indicate the severity of skin diseases and help distinguish melanomas from benign lesions. We propose a color histogram analysis, a traditional image processing technique, to analyze the pixels of skin lesions from three publicly available datasets: PH2, ISIC2016, and Med-Node, which include dermoscopic and non-dermoscopic images. While the PH2 dataset contains ground truth about skin lesion colors, the ISIC2016 and Med-Node datasets lack such annotations; our algorithm establishes this ground truth using the color histogram analysis based on the PH2 dataset. We then design and train a 19-layer Convolutional Neural Network (CNN) with different skip connections of residual blocks to classify lesions into three categories based on the number of colors present. The DeepDream algorithm is utilized to visualize the learned features of different layers, and multiple configurations of the proposed CNN are tested, achieving the highest weighted F1-score of 75.00 % on the test set. LIME is subsequently applied to identify the most important features influencing the model's decision-making. The findings demonstrate that the number of colors in lesions is a significant feature for describing skin conditions. The proposed CNN, particularly with three skip connections, shows strong potential for clinical application in diagnosing melanoma, supporting its use alongside traditional diagnostic methods.
    Matched MeSH terms: Dermoscopy/methods
  4. Malik AS, Humayun J, Kamel N, Yap FB
    Skin Res Technol, 2014 Aug;20(3):322-31.
    PMID: 24329769 DOI: 10.1111/srt.12122
    BACKGROUND: More than 99% acne patients suffer from acne vulgaris. While diagnosing the severity of acne vulgaris lesions, dermatologists have observed inter-rater and intra-rater variability in diagnosis results. This is because during assessment, identifying lesion types and their counting is a tedious job for dermatologists. To make the assessment job objective and easier for dermatologists, an automated system based on image processing methods is proposed in this study.
    OBJECTIVES: There are two main objectives: (i) to develop an algorithm for the enhancement of various acne vulgaris lesions; and (ii) to develop a method for the segmentation of enhanced acne vulgaris lesions.
    METHODS: For the first objective, an algorithm is developed based on the theory of high dynamic range (HDR) images. The proposed algorithm uses local rank transform to generate the HDR images from a single acne image followed by the log transformation. Then, segmentation is performed by clustering the pixels based on Mahalanobis distance of each pixel from spectral models of acne vulgaris lesions.
    RESULTS: Two metrics are used to evaluate the enhancement of acne vulgaris lesions, i.e., contrast improvement factor (CIF) and image contrast normalization (ICN). The proposed algorithm is compared with two other methods. The proposed enhancement algorithm shows better result than both the other methods based on CIF and ICN. In addition, sensitivity and specificity are calculated for the segmentation results. The proposed segmentation method shows higher sensitivity and specificity than other methods.
    CONCLUSION: This article specifically discusses the contrast enhancement and segmentation for automated diagnosis system of acne vulgaris lesions. The results are promising that can be used for further classification of acne vulgaris lesions for final grading of the lesions.
    KEYWORDS: acne grading; acne lesions; acne vulgaris; enhancement; segmentation
    Matched MeSH terms: Dermoscopy/methods*
  5. Nugroho H, Ahmad Fadzil MH, Shamsudin N, Hussein SH
    Skin Res Technol, 2013 Feb;19(1):e72-7.
    PMID: 22233154 DOI: 10.1111/j.1600-0846.2011.00610.x
    Vitiligo is a cutaneous pigmentary disorder characterized by depigmented macules and patches that result from loss of epidermal melanocytes. Physician evaluates the efficacy of treatment by comparing the extent of vitiligo lesions before and after treatment based on the overall visual impression of the treatment response. This method is called the physician's global assessment (PGA) which is subjective. In this article, we present an innovative digital image processing method to determine vitiligo lesion area in an objective manner.
    Matched MeSH terms: Dermoscopy/methods*
  6. Ramli R, Malik AS, Hani AF, Jamil A
    Skin Res Technol, 2012 Feb;18(1):1-14.
    PMID: 21605170 DOI: 10.1111/j.1600-0846.2011.00542.x
    INTRODUCTION: This paper presents a comprehensive review of acne grading and measurement. Acne is a chronic disorder of the pilosebaceous units, with excess sebum production, follicular epidermal hyperproliferation, inflammation and Propionibacterium acnes activity. Most patients are affected with acne vulgaris, which is the prevalent type of acne. Acne vulgaris consists of comedones (whitehead and blackhead), papules, pustules, nodules and cysts.
    OBJECTIVES: To review and identify the issues for acne vulgaris grading and computational assessment methods. To determine the future direction for addressing the identified issues.
    METHODS: There are two main methods of assessment for acne severity grading, namely, lesion counting and comparison of patient with a photographic standard. For the computational assessment method, the emphasis is on computational imaging techniques.
    RESULTS: Current acne grading methods are very time consuming and tedious. Generally, they rely on approximation for counting lesions and hence the assessment is quite subjective, with both inter and intra-observer variability. It is important to accurately assess acne grade to evaluate its severity as this influences treatment selection and assessment of response to therapy. This will further help in better disease management and more efficacious treatment.
    CONCLUSION: Semi-automated or automated methods based on computational imaging techniques should be devised for acne grade assessment.
    Matched MeSH terms: Dermoscopy/methods*
  7. Ihtatho D, Fadzil MH, Affandi AM, Hussein SH
    PMID: 18002738
    Psoriasis is a skin disorder which is caused by genetic fault. There is no cure for psoriasis, however, there are many treatment modalities to help control the disease. To evaluate treatment efficacy, PASI (Psoriasis Area and Severity Index) which is the current gold standard method is used to measure psoriasis severity by evaluating the area, erythema, scaliness and thickness of the plaques. However, the calculation of PASI can be tedious and subjective. In this work, we develop a computer vision method that determines one of the PASI parameter, the lesion area. The method isolates healthy (or healed) skin areas from lesion areas by analyzing the hue and chroma information in the CIE L*a*b* colour space. Centroids of healthy skin and psoriasis in the hue-chroma space are determined from selected sample. Euclidean distance of all pixels from each centroid is calculated. Each pixel is assigned to the class with minimum Euclidean distance. The study involves patients from three different ethnic origins having different skin tones. Results obtained show that the proposed method is comparable to the dermatologist visual approach.
    Matched MeSH terms: Dermoscopy/methods*
  8. Nugroho H, Fadzil MH, Yap VV, Norashikin S, Suraiya HH
    PMID: 18002737
    In this paper, we describe an image processing scheme to analyze and determine areas of skin that have undergone repigmentation in particular, during the treatment of vitiligo. In vitiligo cases, areas of skin become pale or white due to the lack of skin pigment called melanin. Vitiligo treatment causes skin repigmentation resulting in a normal skin color. However, it is difficult to determine and quantify the amount of repigmentation visually during treatment because the repigmentation progress is slow and moreover changes in skin color can only be discerned over a longer time frame typically 6 months. Here, we develop a digital image analysis scheme that can identify and determine vitiligo skin areas and repigmentation progression on a shorter time period. The technique is based on principal component analysis and independent component analysis which converts the RGB skin image into a skin image that represent skin areas due to melanin and haemoglobin only, followed by segmentation process. Vitiligo skin lesions are identified as skin areas that lack melanin (non-melanin areas). In the initial studies of 4 patients, the method has been able to quantify repigmentation in vitiligo lesion. Hence it is now possible to determine repigmentation progression objectively and treatment efficacy on a shorter time cycle.
    Matched MeSH terms: Dermoscopy/methods*
  9. Hani AF, Prakasa E, Nugroho H, Affandi AM, Hussein SH
    PMID: 23366902 DOI: 10.1109/EMBC.2012.6346941
    Psoriasis is a common skin disorder with a prevalence of 0.6 - 4.8% around the world. The most common is plaques psoriasis and it appears as red scaling plaques. Psoriasis is incurable but treatable in a long term treatment. Although PASI (Psoriasis Area and Severity Index) scoring is recognised as gold standard for psoriasis assessment, this method is still influenced by inter and intra-rater variation. An imaging and analysis system called α-PASI is developed to perform PASI scoring objectively. Percentage of lesion area to the body surface area is one of PASI parameter. In this paper, enhanced imaging methods are developed to improve the determination of body surface area (BSA) and lesion area. BSA determination method has been validated on medical mannequin. BSA accuracies obtained at four body regions are 97.80% (lower limb), 92.41% (trunk), 87.72% (upper limb), and 83.82% (head). By applying fuzzy c-means clustering algorithm, the membership functions of lesions area for PASI area scoring have been determined. Performance of scoring result has been tested with double assessment by α-PASI area algorithm on body region images from 46 patients. Kappa coefficients for α-PASI system are greater than or equal to 0.72 for all body regions (Head - 0.76, Upper limb - 0.81, Trunk - 0.85, Lower limb - 0.72). The overall kappa coefficient for the α-PASI area is 0.80 that can be categorised as substantial agreement. This shows that the α-PASI area system has a high reliability and can be used in psoriasis area assessment.
    Matched MeSH terms: Dermoscopy/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links