J Digit Imaging, 2013 Apr;26(2):361-70.
PMID: 22610151 DOI: 10.1007/s10278-012-9483-5

Abstract

Standard X-ray images using conventional screen-film technique have a limited field of view that is insufficient to show the full bone structure of large hands on a single frame. To produce images containing the whole hand structure, digitized images from the X-ray films can be assembled using image stitching. This paper presents a new medical image stitching method that utilizes minimum average correlation energy filters to identify and merge pairs of hand X-ray medical images. The effectiveness of the proposed method is demonstrated in the experiments involving two databases which contain a total of 40 pairs of overlapping and non-overlapping hand images. The experimental results are compared with that of the normalized cross-correlation (NCC) method. It is found that the proposed method outperforms the NCC method in classifying and merging the overlapping and non-overlapping medical images. The efficacy of the proposed method is further indicated by its average execution time, which is about five times shorter than that of the other method.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.