The development of a two phase hollow fiber liquid-phase microextraction technique, followed by gas-chromatography-flame ionization detection (GC-FID) for the profiling of the fatty acids (FAs) (lauric, myristic, palmitic, stearic, palmitoleic, oleic, linoleic, linolenic and arachidic) in vegetable oils is described. Heptadecanoic acid methyl ester was used as the internal standard. The FAs were transesterified to their corresponding methyl esters prior to the extraction. Extraction parameters such as type of extracting solvent, temperature, extraction time, stirring speed and salt addition were studied and optimized. Recommended conditions were extraction solvent, n-tridecane; extraction time, 35 min; extraction temperature, ambient; without addition of salt. Enrichment factors varying from 37 to 115 were achieved. Calibration curves for the nine FAs were well correlated (r(2)>0.994) within the range of 10-5000 μg L(-1). The limit of detection (signal:noise, 3) was 4.73-13.21 ng L(-1). The method was successfully applied to the profiling of the FAs in palm oils (crude, olein, kernel, and carotino cooking oil) and other vegetable oils (soybean, olive, coconut, rice bran and pumpkin). The encouraging enrichments achieved offer an interesting option for the profiling of the minor and major FAs in palm and other vegetable oils.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.