Affiliations 

  • 1 a Department of Mathematical Sciences , Universiti Teknologi Malaysia , Skudai , Johor , Malaysia
SAR QSAR Environ Res, 2017 Jan;28(1):75-90.
PMID: 28176549 DOI: 10.1080/1062936X.2017.1278618

Abstract

A high-dimensional quantitative structure-activity relationship (QSAR) classification model typically contains a large number of irrelevant and redundant descriptors. In this paper, a new design of descriptor selection for the QSAR classification model estimation method is proposed by adding a new weight inside L1-norm. The experimental results of classifying the anti-hepatitis C virus activity of thiourea derivatives demonstrate that the proposed descriptor selection method in the QSAR classification model performs effectively and competitively compared with other existing penalized methods in terms of classification performance on both the training and the testing datasets. Moreover, it is noteworthy that the results obtained in terms of stability test and applicability domain provide a robust QSAR classification model. It is evident from the results that the developed QSAR classification model could conceivably be employed for further high-dimensional QSAR classification studies.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.