Displaying all 9 publications

Abstract:
Sort:
  1. Kasan NA, Yusof SZM, Manan H, Khairul WM, Zakeri HA
    J Environ Manage, 2021 Sep 15;294:113008.
    PMID: 34119989 DOI: 10.1016/j.jenvman.2021.113008
    High nutrient loading in aquatic environment has become the main causative of harmful algae blooms (HABs) in water resources particularly pond, lake and river. HABs are mostly dominated by microalgae derived from the group of blue-green algae which are capable of releasing harmful toxins. Therefore, this study aims to investigate the inhibitory effects of thiourea derivatives on the growth of such blue-green algae. Thiourea derivatives have been proven to exhibit antifungal and antibacterial effects. However, there is still limited study had been conducted on the effect of thiourea derivatives toward blue-green algae species in recent years. In this research, a species of blue-green algae from Kenyir Lake, Terengganu, Malaysia was successfully isolated using morphological characters and molecularly identified as Synechoccus elongatus. Four new thiourea derivative compounds were also successfully synthesised. The compounds were designed with variation on different R-substitution group and characterised using Nuclear Magnetic Resonance (NMR) to confirm their molecular structure. Those compounds were characterised as 1-Benzyl-3-(3,5-dimethoxy-benzoyl)-thiourea (C1), 1-(3-Chloro-benzyl)-3-(3,5-dimethoxy-benzoyl)-thiourea (C2), 1-(3,5-Dimethoxy-benzoyl)-3-(3-methyl-benzyl)-thiourea (C3) and 1-(3,5-Dimethoxy-benzoyl)-3-(3-trifluoromethyl-benzyl)-thiourea (C4). For the inhibition assessment,S. elongatus were treated with C1-C4 for 5 day at concentration of 2, 5, 10 and 20 μg/ml, respectively. C3 compound showed the highest inhibition percentage with 98% of inhibition after 5 days treatment. By using Bradford method, protein extraction of S. elongatus was conducted at the highest inhibition percentage. Protein concentration of treated species was observed with 3.28 μg/ml as compared to protein concentration of control with 6.48 μg/ml. This result indicated the reduction of protein content after the treatment. Protein band pattern was identified intensed after the treatment SDS PAGE was carried out. The thiourea derivatives compound proved to have successfully inhibited the growth of blue-green algae. Hence, further study should be carried out to ensure the compound can be practically utilized in the pond and in natural environment.
    Matched MeSH terms: Thiourea/pharmacology
  2. Khan KM, Naz F, Taha M, Khan A, Perveen S, Choudhary MI, et al.
    Eur J Med Chem, 2014 Mar 3;74:314-23.
    PMID: 24486414 DOI: 10.1016/j.ejmech.2014.01.001
    Thiourea derivatives (1-38) were synthesized and evaluated for their urease inhibition potential. The synthetic compounds showed a varying degree of in vitro urease inhibition with IC50 values 5.53 ± 0.02-91.50 ± 0.08 μM, most of which are superior to the standard thiourea (IC₅₀ = 21.00 ± 0.11 μM). In order to ensure the mode of inhibition of these compounds, the kinetic study of the most active compounds has been carried out. Most of these inhibitors were found to be mixed-type of inhibitors, except compounds 13 and 30 which were competitive, while compound 19 was identified as non-competitive inhibitor with Ki values between 8.6 and 19.29 μM.
    Matched MeSH terms: Thiourea/pharmacology*
  3. Imran S, Taha M, Ismail NH, Fayyaz S, Khan KM, Choudhary MI
    Bioorg Chem, 2015 Oct;62:83-93.
    PMID: 26275866 DOI: 10.1016/j.bioorg.2015.08.001
    This article describes discovery of 29 novel bisindolylmethanes consisting of thiourea moiety, which had been synthesized through three steps. These novel bisindolylmethane derivatives evaluated for their potential inhibitory activity against carbonic anhydrase (CA) II. The results for in vitro assay of carbonic anhydrase II inhibition activity showed that some of the compounds are capable of suppressing the activity of carbonic anhydrase II. Bisindoles having halogen at fifth position showed better inhibitory activity as compared to unsubstituted bisindoles. Derivatives showing inhibition activity docked to further, understand the binding behavior of these compounds with carbonic anhydrase II. Docking studies for the active compound 3j showed that nitro substituent at para position fits into the core of the active site. The nitro substituent of compound 3j is capable of interacting with Zn ion. This interaction believed to be the main factor causing inhibition activity to take place.
    Matched MeSH terms: Thiourea/pharmacology*
  4. Algamal ZY, Lee MH
    SAR QSAR Environ Res, 2017 Jan;28(1):75-90.
    PMID: 28176549 DOI: 10.1080/1062936X.2017.1278618
    A high-dimensional quantitative structure-activity relationship (QSAR) classification model typically contains a large number of irrelevant and redundant descriptors. In this paper, a new design of descriptor selection for the QSAR classification model estimation method is proposed by adding a new weight inside L1-norm. The experimental results of classifying the anti-hepatitis C virus activity of thiourea derivatives demonstrate that the proposed descriptor selection method in the QSAR classification model performs effectively and competitively compared with other existing penalized methods in terms of classification performance on both the training and the testing datasets. Moreover, it is noteworthy that the results obtained in terms of stability test and applicability domain provide a robust QSAR classification model. It is evident from the results that the developed QSAR classification model could conceivably be employed for further high-dimensional QSAR classification studies.
    Matched MeSH terms: Thiourea/pharmacology*
  5. Ibrahim MA, Yusof MS, Amin NM
    Molecules, 2014 Apr 22;19(4):5191-204.
    PMID: 24759076 DOI: 10.3390/molecules19045191
    Thiourea derivatives display a broad spectrum of applications in chemistry, various industries, medicines and various other fields. Recently, different thiourea derivatives have been synthesized and explored for their anti-microbial properties. In this study, four carbonyl thiourea derivatives were synthesized and characterized, and then further tested for their anti-amoebic properties on two potential pathogenic species of Acanthamoeba, namely A. castellanii (CCAP 1501/2A) and A. polyphaga (CCAP 1501/3A). The results indicate that these newly-synthesized thiourea derivatives are active against both Acanthamoeba species. The IC50 values obtained were in the range of 2.39-8.77 µg·mL⁻¹ (9.47-30.46 µM) for A. castellanii and 3.74-9.30 µg·mL⁻¹ (14.84-31.91 µM) for A. polyphaga. Observations on the amoeba morphology indicated that the compounds caused the reduction of the amoeba size, shortening of their acanthopodia structures, and gave no distinct vacuolar and nuclear structures in the amoeba cells. Meanwhile, fluorescence microscopic observation using acridine orange and propidium iodide (AOPI) staining revealed that the synthesized compounds induced compromised-membrane in the amoeba cells. The results of this study proved that these new carbonyl thiourea derivatives, especially compounds M1 and M2 provide potent cytotoxic properties toward pathogenic Acanthamoeba to suggest that they can be developed as new anti-amoebic agents for the treatment of Acanthamoeba keratitis.
    Matched MeSH terms: Thiourea/pharmacology*
  6. Ho WS, Ou HY, Yeo CC, Thong KL
    BMC Genomics, 2015;16:199.
    PMID: 25879448 DOI: 10.1186/s12864-015-1421-8
    Strains of Escherichia coli that are non-typeable by pulsed-field gel electrophoresis (PFGE) due to in-gel degradation can influence their molecular epidemiological data. The DNA degradation phenotype (Dnd(+)) is mediated by the dnd operon that encode enzymes catalyzing the phosphorothioation of DNA, rendering the modified DNA susceptible to oxidative cleavage during a PFGE run. In this study, a PCR assay was developed to detect the presence of the dnd operon in Dnd(+) E. coli strains and to improve their typeability. Investigations into the genetic environments of the dnd operon in various E. coli strains led to the discovery that the dnd operon is harboured in various diverse genomic islands.
    Matched MeSH terms: Thiourea/pharmacology
  7. Lachhi Reddy V, Avula VKR, Zyryanov GV, Vallela S, Anireddy JS, Pasupuleti VR, et al.
    Bioorg Chem, 2020 01;95:103558.
    PMID: 31911311 DOI: 10.1016/j.bioorg.2019.103558
    A series of 1-(2,3-dihydro-1H-indan-1-yl)-3-aryl urea/thiourea derivatives (4a-j) have been synthesized from the reaction of 2,3-dihydro-1H-inden-1-amine (2) with various aryl isocyanates/isothiocyanates (3a-j) by using N,N-DIPEA base (Hunig's base) catalyst in THF at reflux conditions. All of them are structurally confirmed by spectral (IR, 1H &13C NMR and MASS) and elemental analysis and screened for their in-vitro antioxidant activity against DPPH and NO free radicals and found that compounds 4b, 4i, 4h &4g are potential antioxidants. The obtained in vitro results were compared with the molecular docking, ADMET, QSAR and bioactivity study results performed for them and identified that the recorded in silico binding affinities were observed in good correlation with the in vitro antioxidant results. The Molecular docking analysis had unveiled the strong hydrogen bonding interactions of synthesized ligands with ARG 160 residue of protein tyrosine kinase (2HCK) enzyme and plays an effective role in its inhibition. Toxicology studies have assessed the potential risks of 4a-j and inferred that all of them were in the limits of potential drugs. The conformational analysis of 4a-j inferred that the urea/thiourea spacer linking 2,3-dihydro-1H-inden-1-amino and substituted aryl units has facilitated all these molecules to effectively bind with ARG 160 amino acid residue present on the α-helix of the protein tyrosine kinase (2HCK) enzyme specifically on chain A of hemopoetic cell kinase. Collectively this study has established a relationship between the antioxidant potentiality and ligands binding with ARG 160 amino acid residue of chain A of 2HCK enzyme to inhibit its growth as well as proliferation of reactive oxygen species in vivo.
    Matched MeSH terms: Thiourea/pharmacology
  8. Zawawi NK, Taha M, Ahmat N, Ismail NH, Wadood A, Rahim F
    Bioorg Chem, 2017 02;70:184-191.
    PMID: 28043716 DOI: 10.1016/j.bioorg.2016.12.009
    Thiourea derivatives having benzimidazole 1-17 have been synthesized, characterized by 1H NMR, 13C NMR and EI-MS and evaluated for α-glucosidase inhibition. Identification of potential α-glucosidase inhibitors were done by in vitro screening of 17 thiourea bearing benzimidazole derivatives using Baker's yeast α-glucosidase enzyme. Compounds 1-17 exhibited a varying degree of α-glucosidase inhibitory activity with IC50 values between 35.83±0.66 and 297.99±1.20μM which are more better than the standard acarbose (IC50=774.5±1.94μM). Compound 10 and 14 showed significant inhibitory effects with IC50 value 50.57±0.81 and 35.83±0.66μM, respectively better than the rest of the series. Structure activity relationships were established. Molecular docking studies were performed to understand the binding interaction of the compounds.
    Matched MeSH terms: Thiourea/pharmacology*
  9. Sunggip C, Nishimura A, Shimoda K, Numaga-Tomita T, Tsuda M, Nishida M
    Pharmacol Res, 2017 Jun;120:51-59.
    PMID: 28336370 DOI: 10.1016/j.phrs.2017.03.013
    Aging has a remarkable effect on cardiovascular homeostasis and it is known as the major non-modifiable risk factor in the development of hypertension. Medications targeting sympathetic nerve system and/or renin-angiotensin-aldosterone system are widely accepted as a powerful therapeutic strategy to improve hypertension, although the control rates remain unsatisfactory especially in the elder patients with hypertension. Purinergic receptors, activated by adenine, uridine nucleotides and nucleotide sugars, play pivotal roles in many biological processes, including platelet aggregation, neurotransmission and hormone release, and regulation of cardiovascular contractility. Since clopidogrel, a selective inhibitor of G protein-coupled purinergic P2Y12 receptor (P2Y12R), achieved clinical success as an anti-platelet drug, P2YRs has been attracted more attention as new therapeutic targets of cardiovascular diseases. We have revealed that UDP-responsive P2Y6R promoted angiotensin type 1 receptor (AT1R)-stimulated vascular remodeling in mice, in an age-dependent manner. Moreover, the age-related formation of heterodimer between AT1R and P2Y6R was disrupted by MRS2578, a P2Y6R-selective inhibitor. These findings suggest that P2Y6R is a therapeutic target to prevent age-related hypertension.
    Matched MeSH terms: Thiourea/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links