• 1 Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia (USM), Penang, Malaysia. Electronic address:
  • 2 Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia (USM), Penang, Malaysia
Sci Total Environ, 2017 Apr 15;584-585:1121-1129.
PMID: 28169025 DOI: 10.1016/j.scitotenv.2017.01.172


Carbon dioxide (CO2) using biological process is one of the promising approaches for CO2 capture and storage. Recently, biological sequestration using microalgae has gained many interest due to its capability to utilize CO2 as carbon source and biomass produced can be used as a feedstock for other value added product for instance biofuel and chemicals. In this study, the CO2 biofixation by two microalgae species, Chlorella sp. and Tetraselmis suecica was investigated using different elevated CO2 concentration. The effect of CO2 concentration on microalgae growth kinetic, biofixation and its chemical composition were determined using 0.04, 5, 15 and 30% CO2. The variation of initial pH value and its relationship on CO2 concentration toward cultivation medium was also investigated. The present study indicated that both microalgae displayed different tolerance toward CO2 concentration. The maximum biomass production and biofixation for Chlorella sp. of 0.64gL-1 and 96.89mgL-1d-1 was obtained when the cultivation was carried out using 5 and 15% CO2, respectively. In contrast, the maximum biomass production and CO2 biofixation for T. suecica of 0.72gL-1 and 111.26mgL-1d-1 were obtained from cultivation using 15 and 5% CO2. The pH value for the cultivation medium using CO2 was between 7.5 and 9, which is favorable for microalgal growth. The potential of biomass obtained from the cultivation as a biorefinery feedstock was also evaluated. An anaerobic fermentation of the microalgae biomass by bacteria Clostridium saccharoperbutylacenaticum N1-4 produced various type of value added product such as organic acid and solvent. Approximately 0.27 and 0.90gL-1 of organic acid, which corresponding to acetic and butyric acid were produced from the fermentation of Chlorella sp. and T. suecica biomass. Overall, this study suggests that Chlorella sp. and T. suecica are efficient microorganism that can be used for CO2 biofixation and as a feedstock for chemical production.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.