Affiliations 

  • 1 Discipline of Electrical Engineering, Indian Institute of Technology Indore, Indore 453552, India. Electronic address: phd1501102003@iiti.ac.in
  • 2 Discipline of Electrical Engineering, Indian Institute of Technology Indore, Indore 453552, India
  • 3 Department of Ophthalmology, Kasturba Medical College, Manipal 576104, India
  • 4 Department of Electronics and Communication Engineering, Ngee Ann Polytechnic, 599489, Singapore; Department of Biomedical Engineering, School of Science and Technology, SUSS University, 599491, Singapore; Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
Comput Biol Med, 2017 Sep 01;88:142-149.
PMID: 28728059 DOI: 10.1016/j.compbiomed.2017.06.017

Abstract

Glaucoma is one of the leading causes of permanent vision loss. It is an ocular disorder caused by increased fluid pressure within the eye. The clinical methods available for the diagnosis of glaucoma require skilled supervision. They are manual, time consuming, and out of reach of common people. Hence, there is a need for an automated glaucoma diagnosis system for mass screening. In this paper, we present a novel method for an automated diagnosis of glaucoma using digital fundus images. Variational mode decomposition (VMD) method is used in an iterative manner for image decomposition. Various features namely, Kapoor entropy, Renyi entropy, Yager entropy, and fractal dimensions are extracted from VMD components. ReliefF algorithm is used to select the discriminatory features and these features are then fed to the least squares support vector machine (LS-SVM) for classification. Our proposed method achieved classification accuracies of 95.19% and 94.79% using three-fold and ten-fold cross-validation strategies, respectively. This system can aid the ophthalmologists in confirming their manual reading of classes (glaucoma or normal) using fundus images.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.