Affiliations 

  • 1 School of Pharmacy, International Medical Universit. Malaysia
Pharm Nanotechnol, 2017 Aug 07.
PMID: 28786352 DOI: 10.2174/2211738505666170808095258

Abstract

BACKGROUND: Respiratory tract being a non-invasive route of drug administration is gaining massive attention in the present time to achieve both local and the systemic effects. In order to achieve effective therapeutic effects of a drug in the pulmonary region, it requires challenging barriers like mucociliary clearance and uptake by macrophages. An effective drug delivery system delivers the therapeutically active moieties at the right time, rate and in a reproducible manner to target sites for the effectively the human illnesses. A major limitation associated with most of the currently available conventional and controlled release drug delivery devices is that not all the drug candidates are well absorbed uniformly locally or systemically.

METHODS: We searched for the chitosan and its derivatives based nanocarrier systems for the pulmonary drug delivery. We focused on the applications of chitosan in the development of nanoparticles for the pulmonary drug delivery.

RESULTS: Chitosan, a natural linear bio poly amino saccharide is playing a crucial role in the development of novel drug delivery systems (NDDS) such as nanoparticles in order to treat various respiratory diseases effectively by managing these difficulties due to its unique characteristic properties of biodegradability, biocompatibility, mucoadhesivity and its ability to enhance macromolecule permeation. It also aids in providing sustained and targeted effects, which are the primary requirements of an ideal pulmonary drug delivery system. This review highlights the applications and importance of chitosan with special emphasis on nanotechnology, particularly employed in various respiratory diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD), lung cancer and pulmonary fibrosis.

CONCLUSIONS: This review will be of interest to both the biological and formulation scientists to have a quick snapshot on the utility of chitosan in pulmonary drug delivery systems. At present, there are no patented chitosan based controlled release products available with pulmonary drug delivery and therefore this area needs attention to explore the potential of this polymer in the area of respiratory research.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.