Affiliations 

  • 1 Universiti Teknologi MARA
Science Letter, 2016;10(2):23-25.
MyJurnal

Abstract

The study is conducted to evaluate the significance of solar irradiance, ambient temperature and relative humidity as predictors and to quantify the relative contribution of these ambient parameters as predictors for photovoltaic module temperature model. The module temperature model was developed from experimental data of mono-crystalline and poly-crystalline PV modules retrofitted on metal roof in Klang Valley. The model was developed and analyzed using Multiple Linear Regressions (MLR) and Principle Component Analysis (PCA) Techniques. Solar irradiance, ambient temperature and relative humidity have been proven to be the significant predictors for module temperature. For poly-crystalline PV module, the relative contribution of solar irradiance, ambient temperature and relative humidity are 64.28 %, 17.45 % and 12.64 % respectively. For mono-crystalline PV module, the relative contribution of solar irradiance, ambient temperature and relative humidity are 66.12 %, 17.46 % and 12.48 % respectively. Thus, there is no significant difference in terms of relative contribution of these ambient parameters towards photovoltaic module temperature between poly-crystalline and mono-crystalline PV module technologies.