Displaying publications 1 - 20 of 74 in total

Abstract:
Sort:
  1. Hossain MJ, Faruque MRI, Islam MT
    PLoS One, 2018;13(11):e0207314.
    PMID: 30419057 DOI: 10.1371/journal.pone.0207314
    A new perfect metamaterial absorber (PMA) with high fractional bandwidth (FBW) is examined and verified for solar energy harvesting. Solar cells based on perfect metamaterial give a chance to increase the efficiency of the system by intensifying the solar electromagnetic wave that incident on the device. The designed structure is mostly offered in the visible frequency range so as to exploit the solar's energy efficiently. Parametric investigations with regard to the measurements of the design structure are fulfilled to characterize the absorber. The finite-difference time-domain (FDTD) method-based CST simulator was used to keep the pattern parameters and absorbance analysis. The metamaterial shows almost 99.96% and 99.60% perfect absorption at 523.84 THz and 674.12 THz resonance frequencies. Moreover, absorption's FBW is studied, and 39.22% FBW is found. The results confirm that the designed PMA can attain very high absorption peak at two modes such as transverse electric (TE) and transverse magnetic (TM) mode. Other than the numerical outcomes demonstrated that the suggested configuration was also polarization angle insensitive. In addition, the change of absorbance of the structure has provided a new kind of sensor applications in these frequency ranges. Therefore, the suggested metamaterial absorber offers perfect absorption for visible frequency ranges and can be used for renewable solar energy harvesting applications.
    Matched MeSH terms: Solar Energy*
  2. Siaw FL, Chong KK
    ScientificWorldJournal, 2013;2013:275169.
    PMID: 24453823 DOI: 10.1155/2013/275169
    This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV) systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells' voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%.
    Matched MeSH terms: Solar Energy*
  3. Ismail MA, Tamchek N, Hassan MR, Dambul KD, Selvaraj J, Rahim NA, et al.
    Sensors (Basel), 2011;11(9):8665-73.
    PMID: 22164098 DOI: 10.3390/s110908665
    This paper reports the design, characterization and implementation of a fiber Bragg grating (FBG)-based temperature sensor for an insulted-gate Bipolar transistor (IGBT) in a solar panel inverter. The FBG is bonded to the higher coefficient of thermal expansion (CTE) side of a bimetallic strip to increase its sensitivity. Characterization results show a linear relationship between increasing temperature and the wavelength shift. It is found that the sensitivity of the sensor can be categorized into three characterization temperature regions between 26 °C and 90 °C. The region from 41 °C to 90 °C shows the highest sensitivity, with a value of 14 pm/°C. A new empirical model that considers both temperature and strain effects has been developed for the sensor. Finally, the FBG-bimetal temperature sensor is placed in a solar panel inverter and results confirm that it can be used for real-time monitoring of the IGBT temperature.
    Matched MeSH terms: Solar Energy*
  4. Maghami M, Hizam H, Gomes C, Hajighorbani S, Rezaei N
    PLoS One, 2015;10(8):e0135118.
    PMID: 26275303 DOI: 10.1371/journal.pone.0135118
    Pollution in Southeast Asia is a major public energy problem and the cause of energy losses. A significant problem with respect to this type of pollution is that it decreases energy yield. In this study, two types of photovoltaic (PV) solar arrays were used to evaluate the effect of air pollution. The performance of two types of solar arrays were analysed in this research, namely, two units of a 1 kWp tracking flat photovoltaic (TFP) and two units of a 1 kWp fixed flat photovoltaic arrays (FFP). Data analysis was conducted on 2,190 samples at 30 min intervals from 01st June 2013, when both arrays were washed, until 30th June 2013. The performance was evaluated by using environmental data (irradiation, temperature, dust thickness, and air pollution index), power output, and energy yield. Multiple regression models were predicted in view of the environmental data and PV array output. Results showed that the fixed flat system was more affected by air pollution than the tracking flat plate. The contribution of this work is that it considers two types of photovoltaic arrays under the Southeast Asian pollution 2013.
    Matched MeSH terms: Solar Energy*
  5. Kazem HA, Chaichan MT, Al-Waeli AHA
    Environ Sci Pollut Res Int, 2022 Dec;29(59):88788-88802.
    PMID: 35836053 DOI: 10.1007/s11356-022-21958-5
    Solar cells are considered one of the most important and widespread solar applications in the world. However, the performance of the PV modules is significantly affected by the dust in the air. This paper, therefore, presents a comparison of an outdoor experimental study of dust effect on monocrystalline, and polycrystalline photovoltaic (PV) modules. For analysis, four 100 W PVs were installed horizontally in Sohar, Oman. For each pair of PV modules, one was left dusty due to environmental impact, and the second was cleaned daily. PV performance and environmental parameter measurements were conducted every 30 min for 35 days. The effects of dust on current, voltage, power, and energy were discussed in terms of time and normalized values. Also, cleaning methods were tested to determine the optimum one. It is found that power degradation of monocrystalline (20%) is higher compared with polycrystalline (12%) due to dust accumulation. For monocrystalline, the current, voltage, and power losses ranged between 10.0-24.0%, 2.0-3.5%, and 14.0-31.0%, respectively. However, for polycrystalline, the degradation rates were 16.88-27.92%, 0.455-0.455%, and 17.14-28.1% for current, voltage, and power losses after exposure to outdoor conditions for the same period, respectively. The dust accumulation on the PV surface found after 5 weeks is 0.493 mg/cm2, which can be considered the lowest accumulation rate compared to other Gulf countries, but which, however, leads to less energy degradation as well. It is found that water is sufficient to clean PV in the study area. However, sodium detergent as a cleaner introduced better results compared to water, especially when there is high pollution in the location.
    Matched MeSH terms: Solar Energy*
  6. Nasri S, Zamanifar M, Naderipour A, Nowdeh SA, Kamyab H, Abdul-Malek Z
    Environ Sci Pollut Res Int, 2023 Jun;30(28):71701-71713.
    PMID: 34273072 DOI: 10.1007/s11356-021-15255-w
    Photovoltaic (PV) system is the cleanest form of electricity generation, and it is the only form with no effect on the environment at all. However, some environmental challenges persist, which must be overcome before solar energy may be used to represent a source of truly clean energy. This paper aims to study the stability and dynamic behavior of a grid-connected environmentally friendly photovoltaic energy system using the bifurcation theory. This theory introduces a systematic method for stability analysis of dynamic systems, under changes in the system parameters. To produce bifurcation diagrams based on the bifurcation theory, a parameter is constantly changed in each step, using MATLAB and AUTO, and eigenvalues are monitored simultaneously. Considering how the eigenvalues approach the system's imaginary axis in accordance with the changes in the targeted parameter, the occurred saddle-node and Hopf bifurcations of the grid-connected PV system are extracted. Using the obtained bifurcations, the system's dynamic stability limits against changes in controlled (controller coefficients) and systematic parameters (such as the Thevenin impedance network) are found.
    Matched MeSH terms: Solar Energy*
  7. Jathar LD, Ganesan S, Awasarmol U, Nikam K, Shahapurkar K, Soudagar MEM, et al.
    Environ Pollut, 2023 Jun 01;326:121474.
    PMID: 36965686 DOI: 10.1016/j.envpol.2023.121474
    Recently, solar photovoltaic (PV) technology has shown tremendous growth among all renewable energy sectors. The attractiveness of a PV system depends deeply of the module and it is primarily determined by its performance. The quantity of electricity and power generated by a PV cell is contingent upon a number of parameters that can be intrinsic to the PV system itself, external or environmental. Thus, to improve the PV panel performance and lifetime, it is crucial to recognize the main parameters that directly influence the module during its operational lifetime. Among these parameters there are numerous factors that positively impact a PV system including the temperature of the solar panel, humidity, wind speed, amount of light, altitude and barometric pressure. On the other hand, the module can be exposed to simultaneous environmental stresses such as dust accumulation, shading and pollution factors. All these factors can gradually decrease the performance of the PV panel. This review not only provides the factors impacting PV panel's performance but also discusses the degradation and failure parameters that can usually affect the PV technology. The major points include: 1) Total quantity of energy extracted from a photovoltaic module is impacted on a daily, quarterly, seasonal, and yearly scale by the amount of dust formed on the surface of the module. 2) Climatic conditions as high temperatures and relative humidity affect the operation of solar cells by more than 70% and lead to a considerable decrease in solar cells efficiency. 3) The PV module current can be affected by soft shading while the voltage does not vary. In the case of hard shadowing, the performance of the photovoltaic module is determined by whether some or all of the cells of the module are shaded. 4) Compared to more traditional forms of energy production, PV systems offer a significant number of advantages to the environment. Nevertheless, these systems can procure greenhouse gas emissions, especially during the production stages. In conclusion, this study underlines the importance of considering multiple parameters while evaluating the performance of photovoltaic modules. Environmental factors can have a major impact on the performance of a PV system. It is critical to consider these factors, as well as intrinsic and other intermediate factors, to optimize the performance of solar energy systems. In addition, continuous monitoring and maintenance of PV systems is essential to ensure maximum efficiency and performance.
    Matched MeSH terms: Solar Energy*
  8. Hai T, Abd El-Salam NM, Kh TI, Chaturvedi R, El-Shafai W, Farhang B
    Chemosphere, 2023 Sep;336:139160.
    PMID: 37327820 DOI: 10.1016/j.chemosphere.2023.139160
    In the third millennium, developing countries will confront significant environmental problems such as ozone depletion, global warming, the shortage of fossil resources, and greenhouse gas emissions. This research looked at a multigenerational system that can generate clean hydrogen, fresh water, electricity, heat, and cooling. The system's components include Rankine and Brayton cycles, an Organic Rankine Cycle (ORC), flash desalination, an Alkaline electrolyzer, and a solar heliostat. The proposed process has been compared for two different start-up modes with a combustion chamber and solar heliostat to compare renewable and fossil fuel sources. This research evaluated various characteristics, including turbine pressure, system efficiency, solar radiation, and isentropic efficiency. The energy and exergy efficiency of the proposed system were obtained at around 78.93% and 47.56%, respectively. Exergy study revealed that heat exchangers and alkaline electrolyzers had the greatest exergy destruction rates, at 78.93% and 47.56%, respectively. The suggested system produces 0.04663 kg/s of hydrogen. Results indicate that at the best operational conditions, the exergetic efficiency, power, and hydrogen generation of 56%, 6000 kW, and 1.28 kg/s is reached, respectively. Also, With a 15% improvement in the Brayton cycle's isentropic efficacy, the quantity of hydrogen produced increases from 0.040 kg/s to 0.0520 kg/s.
    Matched MeSH terms: Solar Energy*
  9. Maftouh A, El Fatni O, Bouzekri S, Rajabi F, Sillanpää M, Butt MH
    Environ Sci Pollut Res Int, 2023 Jan;30(2):2341-2354.
    PMID: 36380176 DOI: 10.1007/s11356-022-24116-z
    Due to disparities in the allocation of rainwater and drought, extreme exploitation of groundwater reservoirs has depleted water supplies in many locations. In addition, improper disposal of domestic and industrial waste leads to poor drainage and deterioration of water quality. According to studies, desalination methods are an effective solution for treating unconventional water, i.e., sea and brackish water, and making it usable in daily life. Solar-powered desalination has recently received a great deal of attention around the world. Herein, we summarized challenges and future perspectives associated with solar-powered desalination units. Some hybrid technologies are also discussed like solar-wind desalination and RO-ED crystallizer technology in Morocco and the Middle East and North Africa (MENA) region. Previously, most experimental studies focused on the use of solar energy in traditional desalination methods such as multistage flash and multi-effect distillation. Desalination with reverse osmosis has become popular due to membrane technology improvement and benefits like high recovery ratios and low energy consumption. Furthermore, it has been seen that solar energy is less expensive than the energy obtained from traditional fuels in the MENA area. This article aims to comparatively and systematically review the economic feasibility of the use of solar photovoltaic reverse osmosis in desalination in the MENA region.
    Matched MeSH terms: Solar Energy*
  10. Prabhu N, Saravanan D, Kumarasamy S
    Environ Sci Pollut Res Int, 2023 Sep;30(42):95086-95105.
    PMID: 37582893 DOI: 10.1007/s11356-023-28807-z
    Solar energy provides desired thermal energy for diverse applications, including industrial heating, domestic cooking, power generation, desalination, and agri-food preservation. Despite extensive research on solar drying from the scientific community, there are limited practical applications for small-scale use. This review attempts to analyze the design features of three specific types of dryers for food drying applications: solar evacuated tube dryers, biomass dryers, and hybrid solar dryers. The thermal performance of the three dryers is evaluated in terms of drying time, moisture removal, and temperature attained during drying. The review also assesses the prospects of solar dryers, highlighting the need for further research into innovative designs and advanced drying capabilities. The study provides valuable information for enhancing dryer performance with various integrated solutions.
    Matched MeSH terms: Solar Energy*
  11. Abdul Jabar MH, Srivastava R, Abdul Manaf N, Thangalazhy-Gopakumar S, Ab Latif FE, Luu MT, et al.
    Environ Sci Pollut Res Int, 2023 Nov;30(55):116934-116951.
    PMID: 37221293 DOI: 10.1007/s11356-023-27641-7
    Solar photovoltaic-thermal hybrid with phase change material (PVT-PCM) emerges as an intelligent game changer to stimulate the clean, reliable, and affordable renewable energy technology. This PVT-PCM technology can be manipulated into generating both electricity and thermal energy that feature its practicality for residential and industrial applications. Hybridized of PCM into PVT design adds value to existing architecture with its capability to store excess heat that can be used during insufficient solar irradiation. Present work gives overview of the PVT-PCM system on technology innovation toward commercialization (viz, solar end game) subjected to bibliometric analysis, research and development evolution, and patent activity. A consolidation of these review articles was decluttered to focus on the performance and efficiency of PVT-PCM technology based on the fact that commercialization is ready once the technology is completed and qualified (at technology readiness level, TRL: 8). Economic review was conducted to understand the feasibility of the existing solar technologies and how it affects the PVT-PCM market price. Based on the contemporary findings, promising performance of PVT-PCM technology has underpinned its feasibility and technology readiness. China has predominant local and international framework and expected to be the PVT-PCM technology trendsetter in the next years through its strong international collaborative projects and pioneer in PVT-PCM patent filing. This present work underscores the solar end-game strategy and recommendation to create a path forward to achieve clean energy transition. Though, as to the date of submission of this article, no industry  has found to manufacture/sell this hybrid technology in the market.
    Matched MeSH terms: Solar Energy*
  12. Moradzadeh A, Moayyed H, Mohammadi-Ivatloo B, Aguiar AP, Anvari-Moghaddam A, Abdul-Malek Z
    Environ Sci Pollut Res Int, 2024 Mar;31(12):18281-18295.
    PMID: 37837598 DOI: 10.1007/s11356-023-30224-1
    Recently, the increasing prevalence of solar energy in power and energy systems around the world has dramatically increased the importance of accurately predicting solar irradiance. However, the lack of access to data in many regions and the privacy concerns that can arise when collecting and transmitting data from distributed points to a central server pose challenges to current predictive techniques. This study proposes a global solar radiation forecasting approach based on federated learning (FL) and convolutional neural network (CNN). In addition to maintaining input data privacy, the proposed procedure can also be used as a global supermodel. In this paper, data related to eight regions of Iran with different climatic features are considered as CNN input for network training in each client. To test the effectiveness of the global supermodel, data related to three new regions of Iran named Abadeh, Jarqavieh, and Arak are used. It can be seen that the global forecasting supermodel was able to forecast solar radiation for Abadeh, Jarqavieh, and Arak regions with 95%, 92%, and 90% accuracy coefficients, respectively. Finally, in a comparative scenario, various conventional machine learning and deep learning models are employed to forecast solar radiation in each of the study regions. The results of the above approaches are compared and evaluated with the results of the proposed FL-based method. The results show that, since no training data were available from regions of Abadeh, Jarqavieh, and Arak, the conventional methods were not able to forecast solar radiation in these regions. This evaluation confirms the high ability of the presented FL approach to make acceptable predictions while preserving privacy and eliminating model reliance on training data.
    Matched MeSH terms: Solar Energy*
  13. Daud MZ, Mohamed A, Hannan MA
    ScientificWorldJournal, 2014;2014:271087.
    PMID: 24883374 DOI: 10.1155/2014/271087
    This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV) system with battery energy storage (BES). The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC). For the grid side VSC (G-VSC), two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods.
    Matched MeSH terms: Solar Energy*
  14. Pandey AK, Reji Kumar R, B K, Laghari IA, Samykano M, Kothari R, et al.
    J Environ Manage, 2021 Nov 01;297:113300.
    PMID: 34293672 DOI: 10.1016/j.jenvman.2021.113300
    This article offers a trend of inventions and implementations of photocatalysis process, desalination technologies and solar disinfection techniques adapted particularly for treatment of industrial and domestic wastewater. Photocatalysis treatment of wastewater using solar energy is a promising renewable solution to reduce stresses on global water crisis. Rendering to the United Nation Environment Programme, 1/3 of world population live in water-stressed countries, while by 2025 about 2/3 of world population will face water scarcity. Major pollutants exhibited from numerous sources are critically discussed with focus on potential environmental impacts & hazards. Treatment of wastewater by photocatalysis technique, solar thermal electrochemical process, solar desalination of brackish water and solar advanced oxidation process have been presented and systematically analysed with challenges. Both heterogenous and homogenous photocatalysis techniques employed for wastewater treatment are critically reviewed. For treating domestic wastewater, solar desalination technologies adopted for purifying brackish water into potable water is presented along with key challenges and remedies. Advanced oxidation process using solar energy for degradation of organic pollutant is an important technique to be reviewed due to their effectiveness in wastewater treatment process. Present article focused on three key issues i.e. major pollutants, wastewater treatment techniques and environmental benefits of using solar power for removal of pollutants. The review also provides close ideas on further research needs and major concerns. Drawbacks associated with conventional wastewater treatment options and direct solar energy-based wastewater treatment with energy storage systems to make it convenient during day and night both listed. Although, energy storage systems increase the overall cost of the wastewater treatment plant it also increases the overall efficiency of the system on environmental cost. Cost-efficient wastewater treatment methods using solar power would significantly ensure effective water source utilization, thereby contributing towards sustainable development goals.
    Matched MeSH terms: Solar Energy*
  15. Khan MM, Asghar HMA, Saulat H, Chawla M, Rafiq S, Khan MM, et al.
    Water Environ Res, 2021 Sep;93(9):1554-1561.
    PMID: 33583113 DOI: 10.1002/wer.1537
    Hazardous industrial wastes negatively impact the environment by creating issues for aquatic as well as human's life. This study investigates the treatment of hazardous industrial wastewater using cost-effective graphite adsorbent along with electrochemical regeneration integrated with renewable solar energy. The synthetic industrial effluent containing crystal violet dye was treated using an adsorbent (Nyex™ 1000) having a surface area of 1.0 m2  g-1 . The efficiency of removing solute was found to be more than 90%. The adsorbent regeneration efficiency was achieved at 99.5% by passing a charge of 100 C g-1 at current density of 10 mA cm-2 for 1 h. Solar energy was integrated with electrochemical reactor for the regeneration of adsorbent to make the system cost-effective and self-sustainable. PRACTITIONER POINTS: Industrial hazardous wastewater treatment with a cost-effective graphite integrated adsorbent. Development of renewable solar energy-integrated with electrochemical system for regeneration. Regeneration efficiency of adsorbent Nyex™ 1000 was achieved around 99.5% with integrated system. Sustainable system was introduced to incorporate with renewable energy for waste water treatment.
    Matched MeSH terms: Solar Energy*
  16. Shareef H, Mutlag AH, Mohamed A
    Comput Intell Neurosci, 2017;2017:1673864.
    PMID: 28702051 DOI: 10.1155/2017/1673864
    Many maximum power point tracking (MPPT) algorithms have been developed in recent years to maximize the produced PV energy. These algorithms are not sufficiently robust because of fast-changing environmental conditions, efficiency, accuracy at steady-state value, and dynamics of the tracking algorithm. Thus, this paper proposes a new random forest (RF) model to improve MPPT performance. The RF model has the ability to capture the nonlinear association of patterns between predictors, such as irradiance and temperature, to determine accurate maximum power point. A RF-based tracker is designed for 25 SolarTIFSTF-120P6 PV modules, with the capacity of 3 kW peak using two high-speed sensors. For this purpose, a complete PV system is modeled using 300,000 data samples and simulated using the MATLAB/SIMULINK package. The proposed RF-based MPPT is then tested under actual environmental conditions for 24 days to validate the accuracy and dynamic response. The response of the RF-based MPPT model is also compared with that of the artificial neural network and adaptive neurofuzzy inference system algorithms for further validation. The results show that the proposed MPPT technique gives significant improvement compared with that of other techniques. In addition, the RF model passes the Bland-Altman test, with more than 95 percent acceptability.
    Matched MeSH terms: Solar Energy*
  17. Muhammad FF, Yahya MY, Hameed SS, Aziz F, Sulaiman K, Rasheed MA, et al.
    PLoS One, 2017;12(8):e0182925.
    PMID: 28793325 DOI: 10.1371/journal.pone.0182925
    In this research work, numerical simulations are performed to correlate the photovoltaic parameters with various internal and external factors influencing the performance of solar cells. Single-diode modeling approach is utilized for this purpose and theoretical investigations are compared with the reported experimental evidences for organic and inorganic solar cells at various electrical and thermal conditions. Electrical parameters include parasitic resistances (Rs and Rp) and ideality factor (n), while thermal parameters can be defined by the cells temperature (T). A comprehensive analysis concerning broad spectral variations in the short circuit current (Isc), open circuit voltage (Voc), fill factor (FF) and efficiency (η) is presented and discussed. It was generally concluded that there exists a good agreement between the simulated results and experimental findings. Nevertheless, the controversial consequence of temperature impact on the performance of organic solar cells necessitates the development of a complementary model which is capable of well simulating the temperature impact on these devices performance.
    Matched MeSH terms: Solar Energy*
  18. Sekhar YR, Sharma KV, Kamal S
    Environ Sci Pollut Res Int, 2016 May;23(10):9411-7.
    PMID: 26593731 DOI: 10.1007/s11356-015-5715-9
    The solar flat plate collector operating under different convective modes has low efficiency for energy conversion. The energy absorbed by the working fluid in the collector system and its heat transfer characteristics vary with solar insolation and mass flow rate. The performance of the system is improved by reducing the losses from the collector. Various passive methods have been devised to aid energy absorption by the working fluid. Also, working fluids are modified using nanoparticles to improve the thermal properties of the fluid. In the present work, simulation and experimental studies are undertaken for pipe flow at constant heat flux boundary condition in the mixed convection mode. The working fluid at low Reynolds number in the mixed laminar flow range is undertaken with water in thermosyphon mode for different inclination angles of the tube. Local and average coefficients are determined experimentally and compared with theoretical values for water-based Al2O3 nanofluids. The results show an enhancement in heat transfer in the experimental range with Rayleigh number at higher inclinations of the collector tube for water and nanofluids.
    Matched MeSH terms: Solar Energy*
  19. Kheimi M, K Salamah S, A Maddah H, Mustafa Al Bakri Abdullah M
    Chemosphere, 2023 Sep;335:139036.
    PMID: 37245592 DOI: 10.1016/j.chemosphere.2023.139036
    Considering the limitation of fossil fuel resources and their environmental effects, the use of renewable energies is increasing. In the current research, a combined cooling and power production (CCPP) system is investigated, the energy source of which is solar energy. Solar energy absorbs by solar flat plate collectors (SFPC). The system produces power with the help of an organic Rankine cycle (ORC). An ejector refrigeration cycle (ERC) system is considered to provide cooling capacity. The motive flow is supplied from the expander extraction in the ERC system. Various working fluids have been applied so far for the ORC-ERC cogeneration system. This research investigates the effect of using two working fluids R-11 and R-2545fa, and the zeotropic mixtures obtained by mixing these two fluids. A multiobjective optimization process is considered to select the appropriate working fluid. In the optimization design process, the goal is to minimize the total cost rate (TCR) and maximize the exergy efficiency of the system. The design variables are the quantity of SFPC, heat recovery vapor generator (HRVG) pressure, ejector motive flow pressure, evaporator pressure, condenser pressure, and entertainment ratio. Finally, it is observed that using zeotropic mixtures obtained from these two refrigerants has a better result than using pure refrigerants. Finally, it is observed that the best performance is achieved when R-11 and R245fa are mixed with a ratio of 80 to 20%, respectively and led to 8.5% improvement in exergy efficiency, while the increase in TCR is only 1.5%.
    Matched MeSH terms: Solar Energy*
  20. Umair M, Hidayat NM, Sukri Ahmad A, Nik Ali NH, Mawardi MIM, Abdullah E
    PLoS One, 2024;19(2):e0297376.
    PMID: 38422065 DOI: 10.1371/journal.pone.0297376
    Developing novel EV chargers is crucial for accelerating Electric Vehicle (EV) adoption, mitigating range anxiety, and fostering technological advancements that enhance charging efficiency and grid integration. These advancements address current challenges and contribute to a more sustainable and convenient future of electric mobility. This paper explores the performance dynamics of a solar-integrated charging system. It outlines a simulation study on harnessing solar energy as the primary Direct Current (DC) EV charging source. The approach incorporates an Energy Storage System (ESS) to address solar intermittencies and mitigate photovoltaic (PV) mismatch losses. Executed through MATLAB, the system integrates key components, including solar PV panels, the ESS, a DC charger, and an EV battery. The study finds that a change in solar irradiance from 400 W/m2 to 1000 W/m2 resulted in a substantial 47% increase in the output power of the solar PV system. Simultaneously, the ESS shows a 38% boost in output power under similar conditions, with the assessments conducted at a room temperature of 25°C. The results emphasize that optimal solar panel placement with higher irradiance levels is essential to leverage integrated solar energy EV chargers. The research also illuminates the positive correlation between elevated irradiance levels and the EV battery's State of Charge (SOC). This correlation underscores the efficiency gains achievable through enhanced solar power absorption, facilitating more effective and expedited EV charging.
    Matched MeSH terms: Solar Energy*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links