Affiliations 

  • 1 Young Researchers and Elite Club, Gachsaran Branch, Islamic Azad University, 75818-63876 Gachsaran, Iran
  • 2 Department of Chemistry, College of Science, Gachsaran Branch, Islamic Azad University, 75818-63876 Gachsaran, Iran
  • 3 Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
J Pharm Anal, 2017 Feb;7(1):27-33.
PMID: 29404015 DOI: 10.1016/j.jpha.2016.07.005

Abstract

In this work, an electrochemical sensor was fabricated for determination of an anthracycline, doxorubicin (DOX) as a chemotherapy drug in plasma based on multi-walled carbon nanotubes modified platinum electrode (Pt/MWCNTs). DOX was effectively accumulated on the surface of modified electrode and generated a pair of redox peaks at around 0.522 and 0.647 V (vs. Ag/AgCl) in Britton Robinson (B-R) buffer (pH 4.0, 0.1 M). The electrochemical parameters including pH, type of buffer, accumulation time, amount of modifier and scan rate were optimized. Under the optimized conditions, there was a linear correlation between cathodic peak current and concentration of DOX in the range of 0.05-4.0 µg/mL with the detection limit of 0.002 µg/mL. The number of electron transfers (n) and electron transfer-coefficient (α) were estimated as 2.0 and 0.25, respectively. The constructed sensor displayed excellent precision, sensitivity, repeatability and selectivity in the determination of doxorubicin in plasma. Moreover, cyclic voltammetry studies of DOX in the presence of DNA showed an intercalation mechanism with binding constant (Kb) of 1.12×105 L/mol.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.