In this paper, the application of the method of lines (MOL) to the Forced
Korteweg-de Vries-Burgers equation with variable coefficient (FKdVB) is presented.
The MOL is a powerful technique for solving partial differential equations by typically
using finite-difference approximations for the spatial derivatives and ordinary differential
equations (ODEs) for the time derivative. The MOL approach of the FKdVB
equation leads to a system of ODEs. The solution of the system of ODEs is obtained
by applying the Fourth-Order Runge-Kutta (RK4) method. The numerical solution
obtained is then compared with its progressive wave solution in order to show the
accuracy of the MOL method.