Environmental pollution is one of the major concerns in the 21st century; where billions of tonnes
of harmful chemicals are produced by industries such as petroleum, paints, food, rubber, and
plastic. Phenol and its derivatives infiltrate the ecosystems and have become one of the top major
pollutants worldwide. This review covers the major aspects of immobilization of phenoldegrading
bacteria as a method to improve phenol bioremediation. The use of various forms of
immobilization matrices is discussed along with the advantages and disadvantages of each of the
immobilization matrices especially when environmental usage is warranted. To be used as a
bioremediation tool, the immobilized system must not only be effective, but the matrices must be
non-toxic, non-polluting and if possible non-biodegradable. The mechanical, biological and
chemical stability of the system is paramount for long-term activity as well as price is an
important factor when the very large scale is a concern. The system must also be able to tolerate
high concentration of other toxicants especially heavy metals that form as co-contaminants, and
most immobilized systems are geared towards this last aspect as immobilization provides
protection from other contaminants.