Displaying publications 1 - 20 of 743 in total

  1. Jarić I, Heger T, Castro Monzon F, Jeschke JM, Kowarik I, McConkey KR, et al.
    Trends Ecol Evol, 2019 04;34(4):291-302.
    PMID: 30661709 DOI: 10.1016/j.tree.2018.12.008
    Ecological effects of alien species can be dramatic, but management and prevention of negative impacts are often hindered by crypticity of the species or their ecological functions. Ecological functions can change dramatically over time, or manifest after long periods of an innocuous presence. Such cryptic processes may lead to an underestimation of long-term impacts and constrain management effectiveness. Here, we present a conceptual framework of crypticity in biological invasions. We identify the underlying mechanisms, provide evidence of their importance, and illustrate this phenomenon with case studies. This framework has potential to improve the recognition of the full risks and impacts of invasive species.
    Matched MeSH terms: Ecosystem*
  2. Ashraf MA, Faheem M
    Environ Sci Pollut Res Int, 2020 Oct;27(30):37173-37175.
    PMID: 32281063 DOI: 10.1007/s11356-020-08699-z
    Matched MeSH terms: Ecosystem*
  3. H.M. Teh
    Sains Malaysiana, 2013;42:1301-1310.
    This paper introduces the concept of free surface breakwaters for coastal protection. The advantages, limitations and applications of these breakwaters are discussed. Based on their configurations, free surface breakwaters have been classified into four types, namely solid-type, plate-type, caisson-type and multipart-type. Typical designs of the respective breakwater types are presented and the hydraulic characteristics are reviewed. In addition, comparisons of hydraulic efficiency of some of the free surface breakwaters are also addressed in this paper.
    Matched MeSH terms: Ecosystem
  4. Li QY, Zhang ZW, Tao JP, Liu JH, Yong XH, Meng XF, et al.
    Sains Malaysiana, 2014;43:1119-1125.
    Due to widespread distribution of dwarf bamboo, Chimonobambusa utilis, in mountain environment, the effects of elevation (low and high) and canopy condition (forest understorey and forest edge) on the clonal morphology and leaf fluctuating asymmetry were investigated in an evergreen broadleaves forest of Jinfo Mountain Nature Reserve. Elevation and canopy condition were significant for all morphological traits of C. utilis (except for effect of elevation on node number under branch). Traits of clonal morphology such as height, basal diameter, height under branch tended to be higher in forest understorey and in high elevation. Forest understorey in high elevation was favour of shooting number. Interaction of elevation and canopy conditions had a significant effect on growth of node. Single leaf area (SLA) and all indices of fluctuating asymmetry were significantly higher in low elevation than that in high elevation of forest understorey. Thus, elevation and canopy condition formed environmental stress that lead to the adaptation of morphological traits and leaf fluctuating asymmetry of C. utilis populations to mountain forest habitats.
    Matched MeSH terms: Ecosystem
  5. Short FT, Coles R, Fortes MD, Victor S, Salik M, Isnain I, et al.
    Mar Pollut Bull, 2014 Jun 30;83(2):408-16.
    PMID: 24746094 DOI: 10.1016/j.marpolbul.2014.03.036
    Seagrass systems of the Western Pacific region are biodiverse habitats, providing vital services to ecosystems and humans over a vast geographic range. SeagrassNet is a worldwide monitoring program that collects data on seagrass habitats, including the ten locations across the Western Pacific reported here where change at various scales was rapidly detected. Three sites remote from human influence were stable. Seagrasses declined largely due to increased nutrient loading (4 sites) and increased sedimentation (3 sites), the two most common stressors of seagrass worldwide. Two sites experienced near-total loss from of excess sedimentation, followed by partial recovery once sedimentation was reduced. Species shifts were observed at every site with recovering sites colonized by pioneer species. Regulation of watersheds is essential if marine protected areas are to preserve seagrass meadows. Seagrasses in the Western Pacific experience stress due to human impacts despite the vastness of the ocean area and low development pressures.
    Matched MeSH terms: Ecosystem*
  6. Numata S, Yasuda M, Suzuki RO, Hosaka T, Noor NS, Fletcher CD, et al.
    PLoS One, 2013;8(11):e79095.
    PMID: 24260159 DOI: 10.1371/journal.pone.0079095
    In South-East Asian dipterocarp forests, many trees synchronize their reproduction at the community level, but irregularly, in a phenomenon known as general flowering (GF). Several proximate cues have been proposed as triggers for the synchronization of Southeast Asian GF, but the debate continues, as many studies have not considered geographical variation in climate and flora. We hypothesized that the spatial pattern of GF forests is explained by previously proposed climatic cues if there are common cues for GF among regions. During the study, GF episodes occurred every year, but the spatial occurrence varied considerably from just a few forests to the whole of Peninsular Malaysia. In 2001, 2002 and 2005, minor and major GF occurred widely throughout Peninsular Malaysia (GF2001, GF2002, and GF2005), and the geographical patterns of GF varied between the episodes. In the three regional-scale GF episodes, most major events occurred in regions where prolonged drought (PD) had been recorded prior, and significant associations between GF scores and PD were found in GF2001 and GF2002. However, the frequency of PD was higher than that of GF throughout the peninsula. In contrast, low temperature (LT) was observed during the study period only before GF2002 and GF2005, but there was no clear spatial relationship between GF and LT in the regional-scale episodes. There was also no evidence that last GF condition influenced the magnitude of GF. Thus, our results suggest that PD would be essential to trigger regional-scale GF in the peninsula, but also that PD does not fully explain the spatial and temporal patterns of GF. The coarse relationships between GF and the proposed climatic cues may be due to the geographical variation in proximate cues for GF, and the climatic and floristic geographical variations should be considered to understand the proximate factors of GF.
    Matched MeSH terms: Ecosystem*
  7. Abu Hena MK, Kohinoor SM, Siddique MA, Ismail J, Idris MH, Amin SM
    Pak J Biol Sci, 2012 Jul 01;15(13):641-6.
    PMID: 24218934
    Macrobenthos in coastal environment that play a significant role in the food web. It could also use as a good indicator of aquatic ecosystem health. The abundance and composition of macrobenthos in Bakkhali channel system, Cox's Bazar were conducted in relation to the soil parameters. Samples were collected using Ekman Berge bottom grab from five different stations of Bakkhali channel. Macrobenthos were comprised of five major groups namely Polychaeta (9.96-30.31%), Oligochaeta (3.68-59.707%), Crustacea (0.02-58.40%), Bivalvia (1.40-82.09%) and Gastropoda (0.08-4.25%). Total number of macrobenthos was higher at station I (9000 individuals m(-2)) and station II (8517 individuals m(-2)) compared to other stations. Shannon diversity index among the stations ranged from 0.65-1.04. Soil pH and soil moisture ranged from 6.1-6.4 and 23.44-31.29%, respectively. The highest organic carbon concentration was observed at station I (2.11%) and lowest at station III (1.40%). Maximum fraction of sand by weight was found at stations II (81.88%) and III (87.88) while the highest fraction of clay (21.52%) and silt (8.0%) were recorded in station I. It was observed that benthic bivalves were positively correlated (r = 0.891, p > 0.05) with silt fraction of the sediments.
    Matched MeSH terms: Ecosystem*
  8. Ancrenaz M, Ambu L, Sunjoto I, Ahmad E, Manokaran K, Meijaard E, et al.
    PLoS One, 2010;5(7):e11510.
    PMID: 20634974 DOI: 10.1371/journal.pone.0011510
    Today the majority of wild great ape populations are found outside of the network of protected areas in both Africa and Asia, therefore determining if these populations are able to survive in forests that are exploited for timber or other extractive uses and how this is managed, is paramount for their conservation.
    Matched MeSH terms: Ecosystem*
  9. Whitmee S, Haines A, Beyrer C, Boltz F, Capon AG, de Souza Dias BF, et al.
    Lancet, 2015 Nov 14;386(10007):1973-2028.
    PMID: 26188744 DOI: 10.1016/S0140-6736(15)60901-1
    Matched MeSH terms: Ecosystem*
  10. Brändle J, Kunert N
    Tree Physiol., 2019 12 01;39(12):1975-1983.
    PMID: 31631217 DOI: 10.1093/treephys/tpz104
    Tree autotrophic respiratory processes, especially stem respiration or stem CO2 efflux (Estem), are important components of the forest carbon budget. Despite efforts to investigate the controlling processes of Estem in recent years, a considerable lack in our knowledge remains on the abiotic and biotic drivers affecting Estem dynamics. It has been strongly advocated that long-term measurements would shed light onto those processes. The expensive scientific instruments needed to measure gas exchange have prevented Estem measurements from being applied on a larger temporal and spatial scale. Here, we present an automated closed dynamic chamber system based on inexpensive and industrially broadly applied CO2 sensors, reducing the costs for the sensing system to a minimum. The CO2 sensor was cross-calibrated with a commonly used gas exchange system in the laboratory and in the field, and we found very good accordance of these sensors. We tested the system under harsh tropical climatic conditions, characterized by heavy tropical rainfall events, extreme humidity and temperatures, in a moist lowland forest in Malaysia. We recorded Estem of three Dyera costulata (Miq.) trees with our prototype over various days. The variation of Estem was large among the three tree individuals and varied by 7.5-fold. However, clear diurnal changes in Estem were present in all three tree individuals. One tree showed high diurnal variation in Estem, and the relationship between Estem and temperature was characterized by a strong hysteresis. The large variations found within one single tree species highlight the importance of continuous measurement to quantify ecosystem carbon fluxes.
    Matched MeSH terms: Ecosystem*
  11. Ng CK, Ooi PA, Wong WL, Khoo G
    J Environ Manage, 2020 Feb 01;255:109829.
    PMID: 31783208 DOI: 10.1016/j.jenvman.2019.109829
    Anthropogenic pressures are causing substantial degradation to the freshwater ecosystems globally and Malaysia has not escaped such a bleak scenario. Prompted by the predicament, this study's objective was to pioneer a river assessment system that can be readily adopted to monitor, manage and drive improvement in a wholesome manner. Three sets of a priori metrics were selected to form the Ichthyofaunal Quality Index (IQI: biological), Water Quality Index (WQI: chemical) and River Physical Quality Index (RPQI: physical). These indices were further integrated on equal weighting to construct a novel Malaysian River Integrity Index (MyRII). To test its robustness, the MyRII protocol was field tested in four eco-hydrological zones located in the Kampar River water basin for 18 months to reveal its strengths, weaknesses, and establish the "excellent", "good", "average", "poor" and "impaired" thresholds based on the "best performer" reference site in an empirical manner. The resultant MyRII showed a clear trend that corresponded with different levels of river impairment. Test site zone A which was a reference site with minimal disturbance achieved the highest MyRII (88.95 ± 4.29), followed by partially disturbed zone B (61.95 ± 5.90) and heavily disturbed zone C (50.00 ± 4.29). However, the MyRII in zone D (59.9 ± 6.39), which was a heavily disturbed wetland that was disjointed from the river, did not conform to such trend. Also unveiled and recognized, however, are some unexpected nuances, limitations and challenges that emerged from this study. These are critically discussed as precautions when interpreting and implementing the MyRII protocol. This study adds to the mounting body of evidence that water resource stakeholders and policymakers must look at the big picture and adopt the "balanced ecosystem" mind-set when assessing, restoring and managing the rivers as a freshwater resource.
    Matched MeSH terms: Ecosystem*
  12. Swinfield T, Both S, Riutta T, Bongalov B, Elias D, Majalap-Lee N, et al.
    Glob Chang Biol, 2020 02;26(2):989-1002.
    PMID: 31845482 DOI: 10.1111/gcb.14903
    Logging, pervasive across the lowland tropics, affects millions of hectares of forest, yet its influence on nutrient cycling remains poorly understood. One hypothesis is that logging influences phosphorus (P) cycling, because this scarce nutrient is removed in extracted timber and eroded soil, leading to shifts in ecosystem functioning and community composition. However, testing this is challenging because P varies within landscapes as a function of geology, topography and climate. Superimposed upon these trends are compositional changes in logged forests, with species with more acquisitive traits, characterized by higher foliar P concentrations, more dominant. It is difficult to resolve these patterns using traditional field approaches alone. Here, we use airborne light detection and ranging-guided hyperspectral imagery to map foliar nutrient (i.e. P, nitrogen [N]) concentrations, calibrated using field measured traits, over 400 km2 of northeastern Borneo, including a landscape-level disturbance gradient spanning old-growth to repeatedly logged forests. The maps reveal that canopy foliar P and N concentrations decrease with elevation. These relationships were not identified using traditional field measurements of leaf and soil nutrients. After controlling for topography, canopy foliar nutrient concentrations were lower in logged forest than in old-growth areas, reflecting decreased nutrient availability. However, foliar nutrient concentrations and specific leaf area were greatest in relatively short patches in logged areas, reflecting a shift in composition to pioneer species with acquisitive traits. N:P ratio increased in logged forest, suggesting reduced soil P availability through disturbance. Through the first landscape scale assessment of how functional leaf traits change in response to logging, we find that differences from old-growth forest become more pronounced as logged forests increase in stature over time, suggesting exacerbated phosphorus limitation as forests recover.
    Matched MeSH terms: Ecosystem*
  13. Shafie NJ, Sah SA, Latip NS, Azman NM, Khairuddin NL
    Trop Life Sci Res, 2011 Dec;22(2):13-22.
    PMID: 24575214 MyJurnal
    We present an assessment of the diversity of Malaysian bats at two contrasting habitat types (secondary forest and oil palm plantation) along the Kerian River surveyed between February 2009 and February 2010. Three hundred and twenty nine individual bats from 13 species representing 4 families were recorded using 10 mist nets. The most commonly caught bat in the secondary forest was Cynopterus brachyotis (n=75), followed by Macroglossus minimus (n=10). Meanwhile, in the oil palm plantation, the most commonly caught bat was Cynopterus brachyotis (n=109), followed by Cynopterus horsfieldi (n=76). The netting efforts were equal for both habitat types. The total sampling nights for each habitat type was 5460. The oil palm plantation had a greater bat abundance that was significantly different from that of the secondary forest, with 209 and 120 individuals, respectively (Mann-Whitney U-test = 31.5, p<0.05). Our results suggest that there is no significant difference in species richness between the two sites. However, the invasion by disturbance-associated species of the secondary forest is indicative of negative effects on the forest and animal diversity in this area. Forest managers should consider multiple measures of forest fragmentation sensitivity before making any forest management decisions.
    Matched MeSH terms: Ecosystem
  14. Condit R, Ashton PS, Manokaran N, LaFrankie JV, Hubbell SP, Foster RB
    Philos Trans R Soc Lond B Biol Sci, 1999 Nov 29;354(1391):1739-48.
    PMID: 11605618
    Dynamics of the Pasoh forest in Peninsular Malaysia were assessed by drawing a comparison with a forest in Panama, Central America, whose dynamics have been thoroughly described. Census plots of 50 ha were established at both sites using standard methods. Tree mortality at Pasoh over an eight-year interval was 1.46% yr(-1) for all stems > or = 10 mm diameter at breast height (dbh), and 1.48% yr(-1) for stems > or = 100 mm dbh. Comparable figures at the Barro Colorado Island site in Panama (BCI) were 2.55% and 2.03%. Growth and recruitment rates were likewise considerably higher at BCI than at Pasoh. For example, in all trees 500-700 mm in dbh, mean BCI growth over the period 1985-1995 was 6 mm yr(-1), whereas mean Pasoh growth was about 3.5 mm yr(-1). Examining growth and mortality rates for individual species showed that the difference between the forests can be attributed to a few light-demanding pioneer species at BCI, which have very high growth and mortality; Pasoh is essentially lacking this guild. The bulk of the species in the two forests are shade-tolerant and have very similar mortality, growth and recruitment. The Pasoh forest is more stable than BCI's in another way as well: few of its tree populations changed much over the eight-year census interval. In contrast, at BCI, over 10% of the species had populations increasing or decreasing at a rate of >0.05 yr(-1) compared to just 2% of the species at Pasoh). The faster species turnover at BCI can probably be attributed to severe droughts that have plagued the forest periodically over the past 30 years; Pasoh has not suffered such extreme events recently. The dearth of pioneer species at Pasoh is associated with low-nutrient soil and slow litter breakdown, but the exact mechanisms behind this association remain poorly understood.
    Matched MeSH terms: Ecosystem
  15. Sarijan S, Azman S, Said MIM, Jamal MH
    Environ Sci Pollut Res Int, 2021 Jan;28(2):1341-1356.
    PMID: 33079353 DOI: 10.1007/s11356-020-11171-7
    The utilization of plastics has now become a threat to the environment as it generates microplastic particles (<5 mm in size). The increasing studies on the occurrence of microplastics in different environmental compartments have raised concern about the potential effects on ecosystems and living organisms. Of these, numerous studies are focused on marine environments. The occurrence of microplastics is recently extended to the freshwater environments, including river systems, streams, lakes, pond, creek, and estuarine rivers. This paper overviews the current knowledge and research findings on the occurrence of microplastics in water, sediment, and fish in freshwater environments. The review also covers the adopted methodology and impacts of microplastics to the ecosystem. Future perspectives are discussed as well in this review.
    Matched MeSH terms: Ecosystem
  16. Mokhtari M, Ghaffar MA, Usup G, Cob ZC
    PLoS One, 2015;10(1):e0117467.
    PMID: 25629519 DOI: 10.1371/journal.pone.0117467
    In tropical regions, different species of fiddler crabs coexist on the mangrove floor, which sometimes makes it difficult to define species-specific habitat by visual inspection. The aim of this study is to find key environmental parameters which affect the distribution of fiddler crabs and to determine the habitats in which each species was most abundant. Crabs were collected from 19 sites within the mudflats of Sepang-Lukut mangrove forest. Temperature, porewater salinity, organic matter, water content, carbon and nitrogen content, porosity, chlorophyll content, pH, redox potential, sediment texture and heavy metals were determined in each 1 m2 quadrate. Pearson correlation indicated that all sediment properties except pH and redox potential were correlated with sediment grain size. Canonical correspondence analysis (CCA) indicated that Uca paradussumieri was negatively correlated with salinity and redox potential. Sand dwelling species, Uca perplexa and Uca annulipes, were highly dependent on the abundance of 250 μm and 150 μm grain size particles in the sediment. Canonical Discriminative Analysis (CDA) indicated that variation in sediment grain size best explained where each crab species was most abundant. Moreover, U. paradussumieri commonly occupies muddy substrates of low shore, while U. forcipata lives under the shade of mangrove trees. U. annulipes and U. perplexa with the high number of spoon tipped setae on their second maxiliped are specialized to feed on the sandy sediments. U. rosea and U. triangularis are more common on muddy sediment with high sediment density. In conclusion, sediment grain size that influences most sediment properties acts as a main factor responsible for sediment heterogeneity. In this paper, the correlation between fiddler crab species and environmental parameters, as well as the interaction between sediment characteristics, was explained in order to define the important environmental factors in fiddler crab distributions.
    Matched MeSH terms: Ecosystem*
  17. Che Hasan R, Ierodiaconou D, Laurenson L, Schimel A
    PLoS One, 2014;9(5):e97339.
    PMID: 24824155 DOI: 10.1371/journal.pone.0097339
    Multibeam echosounders (MBES) are increasingly becoming the tool of choice for marine habitat mapping applications. In turn, the rapid expansion of habitat mapping studies has resulted in a need for automated classification techniques to efficiently map benthic habitats, assess confidence in model outputs, and evaluate the importance of variables driving the patterns observed. The benthic habitat characterisation process often involves the analysis of MBES bathymetry, backscatter mosaic or angular response with observation data providing ground truth. However, studies that make use of the full range of MBES outputs within a single classification process are limited. We present an approach that integrates backscatter angular response with MBES bathymetry, backscatter mosaic and their derivatives in a classification process using a Random Forests (RF) machine-learning algorithm to predict the distribution of benthic biological habitats. This approach includes a method of deriving statistical features from backscatter angular response curves created from MBES data collated within homogeneous regions of a backscatter mosaic. Using the RF algorithm we assess the relative importance of each variable in order to optimise the classification process and simplify models applied. The results showed that the inclusion of the angular response features in the classification process improved the accuracy of the final habitat maps from 88.5% to 93.6%. The RF algorithm identified bathymetry and the angular response mean as the two most important predictors. However, the highest classification rates were only obtained after incorporating additional features derived from bathymetry and the backscatter mosaic. The angular response features were found to be more important to the classification process compared to the backscatter mosaic features. This analysis indicates that integrating angular response information with bathymetry and the backscatter mosaic, along with their derivatives, constitutes an important improvement for studying the distribution of benthic habitats, which is necessary for effective marine spatial planning and resource management.
    Matched MeSH terms: Ecosystem*
  18. Fayle TM, Turner EC, Basset Y, Ewers RM, Reynolds G, Novotny V
    Trends Ecol Evol, 2015 Jun;30(6):334-46.
    PMID: 25896491 DOI: 10.1016/j.tree.2015.03.010
    Tropical forests are highly diverse systems involving extraordinary numbers of interactions between species, with each species responding in a different way to the abiotic environment. Understanding how these systems function and predicting how they respond to anthropogenic global change is extremely challenging. We argue for the necessity of 'whole-ecosystem' experimental manipulations, in which the entire ecosystem is targeted, either to reveal the functioning of the system in its natural state or to understand responses to anthropogenic impacts. We survey the current range of whole-ecosystem manipulations, which include those targeting weather and climate, nutrients, biotic interactions, human impacts, and habitat restoration. Finally we describe the unique challenges and opportunities presented by such projects and suggest directions for future experiments.
    Matched MeSH terms: Ecosystem*
  19. Cyranoski D
    Nature, 2003 Jul 10;424(6945):118.
    PMID: 12853917
    Matched MeSH terms: Ecosystem*
  20. Pardo LE, Campbell MJ, Edwards W, Clements GR, Laurance WF
    PLoS One, 2018;13(5):e0197539.
    PMID: 29795615 DOI: 10.1371/journal.pone.0197539
    The rapid expansion of oil palm cultivation in the Neotropics has generated great debate around possible biodiversity impacts. Colombia, for example, is the largest producer of oil palm in the Americas, but the effects of oil palm cultivation on native fauna are poorly understood. Here, we compared how richness, abundance and composition of terrestrial mammal species differ between oil palm plantations and riparian forest in the Colombian Llanos region. Further, we determined the relationships and influence of landscape and habitat level variables on those metrics. We found that species richness and composition differed significantly between riparian forest and oil palm, with site level richness inside oil palm plantations 47% lower, on average, than in riparian forest. Within plantations, mammalian species richness was strongly negatively correlated with cattle abundance, and positively correlated with the density of undergrowth vegetation. Forest structure characteristics appeared to have weak and similar effects on determining mammal species richness and composition along riparian forest strips. Composition at the landscape level was significantly influenced by cover type, percentage of remaining forest and the distance to the nearest town, whereas within oil palm sites, understory vegetation, cattle relative abundance, and canopy cover had significant effects on community composition. Species specific abundance responses varied between land cover types, with oil palm having positive effects on mesopredators, insectivores and grazers. Our findings suggest that increasing habitat complexity, avoiding cattle and retaining native riparian forest-regardless of its structure-inside oil palm-dominated landscapes would help support higher native mammal richness and abundance at both local and landscape scales.
    Matched MeSH terms: Ecosystem*
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links