Displaying publications 1 - 20 of 423 in total

  1. Whitmee S, Haines A, Beyrer C, Boltz F, Capon AG, de Souza Dias BF, et al.
    Lancet, 2015 Nov 14;386(10007):1973-2028.
    PMID: 26188744 DOI: 10.1016/S0140-6736(15)60901-1
    Matched MeSH terms: Ecosystem*
  2. Abu Hena MK, Kohinoor SM, Siddique MA, Ismail J, Idris MH, Amin SM
    Pak. J. Biol. Sci., 2012 Jul 1;15(13):641-6.
    PMID: 24218934
    Macrobenthos in coastal environment that play a significant role in the food web. It could also use as a good indicator of aquatic ecosystem health. The abundance and composition of macrobenthos in Bakkhali channel system, Cox's Bazar were conducted in relation to the soil parameters. Samples were collected using Ekman Berge bottom grab from five different stations of Bakkhali channel. Macrobenthos were comprised of five major groups namely Polychaeta (9.96-30.31%), Oligochaeta (3.68-59.707%), Crustacea (0.02-58.40%), Bivalvia (1.40-82.09%) and Gastropoda (0.08-4.25%). Total number of macrobenthos was higher at station I (9000 individuals m(-2)) and station II (8517 individuals m(-2)) compared to other stations. Shannon diversity index among the stations ranged from 0.65-1.04. Soil pH and soil moisture ranged from 6.1-6.4 and 23.44-31.29%, respectively. The highest organic carbon concentration was observed at station I (2.11%) and lowest at station III (1.40%). Maximum fraction of sand by weight was found at stations II (81.88%) and III (87.88) while the highest fraction of clay (21.52%) and silt (8.0%) were recorded in station I. It was observed that benthic bivalves were positively correlated (r = 0.891, p > 0.05) with silt fraction of the sediments.
    Matched MeSH terms: Ecosystem*
  3. Short FT, Coles R, Fortes MD, Victor S, Salik M, Isnain I, et al.
    Mar. Pollut. Bull., 2014 Jun 30;83(2):408-16.
    PMID: 24746094 DOI: 10.1016/j.marpolbul.2014.03.036
    Seagrass systems of the Western Pacific region are biodiverse habitats, providing vital services to ecosystems and humans over a vast geographic range. SeagrassNet is a worldwide monitoring program that collects data on seagrass habitats, including the ten locations across the Western Pacific reported here where change at various scales was rapidly detected. Three sites remote from human influence were stable. Seagrasses declined largely due to increased nutrient loading (4 sites) and increased sedimentation (3 sites), the two most common stressors of seagrass worldwide. Two sites experienced near-total loss from of excess sedimentation, followed by partial recovery once sedimentation was reduced. Species shifts were observed at every site with recovering sites colonized by pioneer species. Regulation of watersheds is essential if marine protected areas are to preserve seagrass meadows. Seagrasses in the Western Pacific experience stress due to human impacts despite the vastness of the ocean area and low development pressures.
    Matched MeSH terms: Ecosystem*
  4. Ancrenaz M, Ambu L, Sunjoto I, Ahmad E, Manokaran K, Meijaard E, et al.
    PLoS ONE, 2010;5(7):e11510.
    PMID: 20634974 DOI: 10.1371/journal.pone.0011510
    Today the majority of wild great ape populations are found outside of the network of protected areas in both Africa and Asia, therefore determining if these populations are able to survive in forests that are exploited for timber or other extractive uses and how this is managed, is paramount for their conservation.
    Matched MeSH terms: Ecosystem*
  5. Numata S, Yasuda M, Suzuki RO, Hosaka T, Noor NS, Fletcher CD, et al.
    PLoS ONE, 2013;8(11):e79095.
    PMID: 24260159 DOI: 10.1371/journal.pone.0079095
    In South-East Asian dipterocarp forests, many trees synchronize their reproduction at the community level, but irregularly, in a phenomenon known as general flowering (GF). Several proximate cues have been proposed as triggers for the synchronization of Southeast Asian GF, but the debate continues, as many studies have not considered geographical variation in climate and flora. We hypothesized that the spatial pattern of GF forests is explained by previously proposed climatic cues if there are common cues for GF among regions. During the study, GF episodes occurred every year, but the spatial occurrence varied considerably from just a few forests to the whole of Peninsular Malaysia. In 2001, 2002 and 2005, minor and major GF occurred widely throughout Peninsular Malaysia (GF2001, GF2002, and GF2005), and the geographical patterns of GF varied between the episodes. In the three regional-scale GF episodes, most major events occurred in regions where prolonged drought (PD) had been recorded prior, and significant associations between GF scores and PD were found in GF2001 and GF2002. However, the frequency of PD was higher than that of GF throughout the peninsula. In contrast, low temperature (LT) was observed during the study period only before GF2002 and GF2005, but there was no clear spatial relationship between GF and LT in the regional-scale episodes. There was also no evidence that last GF condition influenced the magnitude of GF. Thus, our results suggest that PD would be essential to trigger regional-scale GF in the peninsula, but also that PD does not fully explain the spatial and temporal patterns of GF. The coarse relationships between GF and the proposed climatic cues may be due to the geographical variation in proximate cues for GF, and the climatic and floristic geographical variations should be considered to understand the proximate factors of GF.
    Matched MeSH terms: Ecosystem*
  6. Shafie NJ, Sah SA, Latip NS, Azman NM, Khairuddin NL
    Trop Life Sci Res, 2011 Dec;22(2):13-22.
    PMID: 24575214 MyJurnal
    We present an assessment of the diversity of Malaysian bats at two contrasting habitat types (secondary forest and oil palm plantation) along the Kerian River surveyed between February 2009 and February 2010. Three hundred and twenty nine individual bats from 13 species representing 4 families were recorded using 10 mist nets. The most commonly caught bat in the secondary forest was Cynopterus brachyotis (n=75), followed by Macroglossus minimus (n=10). Meanwhile, in the oil palm plantation, the most commonly caught bat was Cynopterus brachyotis (n=109), followed by Cynopterus horsfieldi (n=76). The netting efforts were equal for both habitat types. The total sampling nights for each habitat type was 5460. The oil palm plantation had a greater bat abundance that was significantly different from that of the secondary forest, with 209 and 120 individuals, respectively (Mann-Whitney U-test = 31.5, p<0.05). Our results suggest that there is no significant difference in species richness between the two sites. However, the invasion by disturbance-associated species of the secondary forest is indicative of negative effects on the forest and animal diversity in this area. Forest managers should consider multiple measures of forest fragmentation sensitivity before making any forest management decisions.
    Matched MeSH terms: Ecosystem
  7. Condit R, Ashton PS, Manokaran N, LaFrankie JV, Hubbell SP, Foster RB
    Philos. Trans. R. Soc. Lond., B, Biol. Sci., 1999 Nov 29;354(1391):1739-48.
    PMID: 11605618
    Dynamics of the Pasoh forest in Peninsular Malaysia were assessed by drawing a comparison with a forest in Panama, Central America, whose dynamics have been thoroughly described. Census plots of 50 ha were established at both sites using standard methods. Tree mortality at Pasoh over an eight-year interval was 1.46% yr(-1) for all stems > or = 10 mm diameter at breast height (dbh), and 1.48% yr(-1) for stems > or = 100 mm dbh. Comparable figures at the Barro Colorado Island site in Panama (BCI) were 2.55% and 2.03%. Growth and recruitment rates were likewise considerably higher at BCI than at Pasoh. For example, in all trees 500-700 mm in dbh, mean BCI growth over the period 1985-1995 was 6 mm yr(-1), whereas mean Pasoh growth was about 3.5 mm yr(-1). Examining growth and mortality rates for individual species showed that the difference between the forests can be attributed to a few light-demanding pioneer species at BCI, which have very high growth and mortality; Pasoh is essentially lacking this guild. The bulk of the species in the two forests are shade-tolerant and have very similar mortality, growth and recruitment. The Pasoh forest is more stable than BCI's in another way as well: few of its tree populations changed much over the eight-year census interval. In contrast, at BCI, over 10% of the species had populations increasing or decreasing at a rate of >0.05 yr(-1) compared to just 2% of the species at Pasoh). The faster species turnover at BCI can probably be attributed to severe droughts that have plagued the forest periodically over the past 30 years; Pasoh has not suffered such extreme events recently. The dearth of pioneer species at Pasoh is associated with low-nutrient soil and slow litter breakdown, but the exact mechanisms behind this association remain poorly understood.
    Matched MeSH terms: Ecosystem
  8. Jarić I, Heger T, Castro Monzon F, Jeschke JM, Kowarik I, McConkey KR, et al.
    PMID: 30661709 DOI: 10.1016/j.tree.2018.12.008
    Ecological effects of alien species can be dramatic, but management and prevention of negative impacts are often hindered by crypticity of the species or their ecological functions. Ecological functions can change dramatically over time, or manifest after long periods of an innocuous presence. Such cryptic processes may lead to an underestimation of long-term impacts and constrain management effectiveness. Here, we present a conceptual framework of crypticity in biological invasions. We identify the underlying mechanisms, provide evidence of their importance, and illustrate this phenomenon with case studies. This framework has potential to improve the recognition of the full risks and impacts of invasive species.
    Matched MeSH terms: Ecosystem
  9. Fayle TM, Turner EC, Basset Y, Ewers RM, Reynolds G, Novotny V
    Trends Ecol. Evol. (Amst.), 2015 Jun;30(6):334-46.
    PMID: 25896491 DOI: 10.1016/j.tree.2015.03.010
    Tropical forests are highly diverse systems involving extraordinary numbers of interactions between species, with each species responding in a different way to the abiotic environment. Understanding how these systems function and predicting how they respond to anthropogenic global change is extremely challenging. We argue for the necessity of 'whole-ecosystem' experimental manipulations, in which the entire ecosystem is targeted, either to reveal the functioning of the system in its natural state or to understand responses to anthropogenic impacts. We survey the current range of whole-ecosystem manipulations, which include those targeting weather and climate, nutrients, biotic interactions, human impacts, and habitat restoration. Finally we describe the unique challenges and opportunities presented by such projects and suggest directions for future experiments.
    Matched MeSH terms: Ecosystem*
  10. Mokhtari M, Ghaffar MA, Usup G, Cob ZC
    PLoS ONE, 2015;10(1):e0117467.
    PMID: 25629519 DOI: 10.1371/journal.pone.0117467
    In tropical regions, different species of fiddler crabs coexist on the mangrove floor, which sometimes makes it difficult to define species-specific habitat by visual inspection. The aim of this study is to find key environmental parameters which affect the distribution of fiddler crabs and to determine the habitats in which each species was most abundant. Crabs were collected from 19 sites within the mudflats of Sepang-Lukut mangrove forest. Temperature, porewater salinity, organic matter, water content, carbon and nitrogen content, porosity, chlorophyll content, pH, redox potential, sediment texture and heavy metals were determined in each 1 m2 quadrate. Pearson correlation indicated that all sediment properties except pH and redox potential were correlated with sediment grain size. Canonical correspondence analysis (CCA) indicated that Uca paradussumieri was negatively correlated with salinity and redox potential. Sand dwelling species, Uca perplexa and Uca annulipes, were highly dependent on the abundance of 250 μm and 150 μm grain size particles in the sediment. Canonical Discriminative Analysis (CDA) indicated that variation in sediment grain size best explained where each crab species was most abundant. Moreover, U. paradussumieri commonly occupies muddy substrates of low shore, while U. forcipata lives under the shade of mangrove trees. U. annulipes and U. perplexa with the high number of spoon tipped setae on their second maxiliped are specialized to feed on the sandy sediments. U. rosea and U. triangularis are more common on muddy sediment with high sediment density. In conclusion, sediment grain size that influences most sediment properties acts as a main factor responsible for sediment heterogeneity. In this paper, the correlation between fiddler crab species and environmental parameters, as well as the interaction between sediment characteristics, was explained in order to define the important environmental factors in fiddler crab distributions.
    Matched MeSH terms: Ecosystem*
  11. Che Hasan R, Ierodiaconou D, Laurenson L, Schimel A
    PLoS ONE, 2014;9(5):e97339.
    PMID: 24824155 DOI: 10.1371/journal.pone.0097339
    Multibeam echosounders (MBES) are increasingly becoming the tool of choice for marine habitat mapping applications. In turn, the rapid expansion of habitat mapping studies has resulted in a need for automated classification techniques to efficiently map benthic habitats, assess confidence in model outputs, and evaluate the importance of variables driving the patterns observed. The benthic habitat characterisation process often involves the analysis of MBES bathymetry, backscatter mosaic or angular response with observation data providing ground truth. However, studies that make use of the full range of MBES outputs within a single classification process are limited. We present an approach that integrates backscatter angular response with MBES bathymetry, backscatter mosaic and their derivatives in a classification process using a Random Forests (RF) machine-learning algorithm to predict the distribution of benthic biological habitats. This approach includes a method of deriving statistical features from backscatter angular response curves created from MBES data collated within homogeneous regions of a backscatter mosaic. Using the RF algorithm we assess the relative importance of each variable in order to optimise the classification process and simplify models applied. The results showed that the inclusion of the angular response features in the classification process improved the accuracy of the final habitat maps from 88.5% to 93.6%. The RF algorithm identified bathymetry and the angular response mean as the two most important predictors. However, the highest classification rates were only obtained after incorporating additional features derived from bathymetry and the backscatter mosaic. The angular response features were found to be more important to the classification process compared to the backscatter mosaic features. This analysis indicates that integrating angular response information with bathymetry and the backscatter mosaic, along with their derivatives, constitutes an important improvement for studying the distribution of benthic habitats, which is necessary for effective marine spatial planning and resource management.
    Matched MeSH terms: Ecosystem*
  12. Cyranoski D
    Nature, 2003 Jul 10;424(6945):118.
    PMID: 12853917
    Matched MeSH terms: Ecosystem*
  13. Shima K, Yamada T, Okuda T, Fletcher C, Kassim AR
    Sci Rep, 2018 01 18;8(1):1024.
    PMID: 29348596 DOI: 10.1038/s41598-018-19250-z
    Selective logging that is commonly conducted in tropical forests may change tree species diversity. In rarely disturbed tropical forests, locally rare species exhibit higher survival rates. If this non-random process occurs in a logged forest, the forest will rapidly recover its tree species diversity. Here we determined whether a forest in the Pasoh Forest Reserve, Malaysia, which was selectively logged 40 years ago, recovered its original species diversity (species richness and composition). To explore this, we compared the dynamics of secies diversity between unlogged forest plot (18.6 ha) and logged forest plot (5.4 ha). We found that 40 years are not sufficient to recover species diversity after logging. Unlike unlogged forests, tree deaths and recruitments did not contribute to increased diversity in the selectively logged forests. Our results predict that selectively logged forests require a longer time at least than our observing period (40 years) to regain their diversity.
    Matched MeSH terms: Ecosystem*
  14. Pardo LE, Campbell MJ, Edwards W, Clements GR, Laurance WF
    PLoS ONE, 2018;13(5):e0197539.
    PMID: 29795615 DOI: 10.1371/journal.pone.0197539
    The rapid expansion of oil palm cultivation in the Neotropics has generated great debate around possible biodiversity impacts. Colombia, for example, is the largest producer of oil palm in the Americas, but the effects of oil palm cultivation on native fauna are poorly understood. Here, we compared how richness, abundance and composition of terrestrial mammal species differ between oil palm plantations and riparian forest in the Colombian Llanos region. Further, we determined the relationships and influence of landscape and habitat level variables on those metrics. We found that species richness and composition differed significantly between riparian forest and oil palm, with site level richness inside oil palm plantations 47% lower, on average, than in riparian forest. Within plantations, mammalian species richness was strongly negatively correlated with cattle abundance, and positively correlated with the density of undergrowth vegetation. Forest structure characteristics appeared to have weak and similar effects on determining mammal species richness and composition along riparian forest strips. Composition at the landscape level was significantly influenced by cover type, percentage of remaining forest and the distance to the nearest town, whereas within oil palm sites, understory vegetation, cattle relative abundance, and canopy cover had significant effects on community composition. Species specific abundance responses varied between land cover types, with oil palm having positive effects on mesopredators, insectivores and grazers. Our findings suggest that increasing habitat complexity, avoiding cattle and retaining native riparian forest-regardless of its structure-inside oil palm-dominated landscapes would help support higher native mammal richness and abundance at both local and landscape scales.
    Matched MeSH terms: Ecosystem*
  15. Kooijman AM, Bruin CJW, van de Craats A, Grootjans AP, Oostermeijer JGB, Scholten R, et al.
    Sci. Total Environ., 2016 Oct 15;568:107-117.
    PMID: 27289393 DOI: 10.1016/j.scitotenv.2016.05.086
    Dune slacks are important habitats, with many endangered plant species. A series of eleven dune slacks of 1-42years old was studied in SW-Texel, the Netherlands, with the EU-habitat directive species Liparis loeselii present in all except the youngest and oldest. Analysis of aerial photographs revealed that new slacks are currently formed every 4-5years. In each slack, topsoil and vegetation data were collected in 2010 and 2014-2015. During succession, vegetation changed from brackish pioneer stages to dune slacks with L. loeselii and Parnassia palustris and ultimately grassland species. Differences between dune slacks and sampling periods were mostly significant. Herb cover and soil C increased with slack age, and over the five year study period, while bare sand, bulk density and pH decreased. The annual pH-decrease was 0.055 and 0.075 for pH-H2O and pH-KCl respectively, and annual C-increase 0.16% and 35gm(-2). Liparis loeselii was only present between pHH2O 5.8-7.5 and pHKCl 5.6-7.6, and only occurred at C-content below 4.3%. In lime-poor dunes, environmental conditions thus become unsuitable approximately 34years after the start of succession. In the dune slacks, Liparis loeselii established within 6years, showed peak values after 11-16years, and declined until conditions became unsuitable. Rejuvenation may occur after large storms with fresh sand deposits. However, even with further succession, the present populations are not endangered and probably last until 2040. With new dune slacks every 5years, L. loeselii occurs in approximately eight different dune slacks at the same time, ensuring viable populations also in the future. This shows that adverse effects of succession can be counteracted by dynamics on local and landscape scale.
    Matched MeSH terms: Ecosystem*
  16. Hehre EJ, Meeuwig JJ
    PLoS ONE, 2016;11(2):e0148250.
    PMID: 26894553 DOI: 10.1371/journal.pone.0148250
    Globally, farmed seaweed production is expanding rapidly in shallow marine habitats. While seaweed farming provides vital income to millions of artisanal farmers, it can negatively impact shallow coral reef and seagrass habitats. However, seaweed farming may also potentially provide food subsidies for herbivorous reef fish such as the Siganidae, a valuable target family, resulting in increased catch. Comparisons of reef fish landings across the central Philippines revealed that the catch of siganids was positively correlated to farmed seaweed production whilst negatively correlated to total reef fish catch over the same period of time. We tested the generality of this pattern by analysing seaweed production, siganid catch, and reef fish catch for six major seaweed-producing countries in the tropics. We hypothesized that increased seaweed production would correspond with increased catch of siganids but not other reef fish species. Analysis of the global data showed a positive correlation between farmed seaweeds and siganids in Southeast Asia (Indonesia, Malaysia, and the Philippines) but not Africa (Tanzania and Zanzibar), or the Western Pacific (Fiji). In Southeast Asia, siganid catch increased disproportionately faster with seaweed production than did reef fish catch. Low continuity, sporadic production and smaller volumes of seaweed farming may explain the differences.
    Matched MeSH terms: Ecosystem*
  17. Brodie JF, Paxton M, Nagulendran K, Balamurugan G, Clements GR, Reynolds G, et al.
    Conserv. Biol., 2016 10;30(5):950-61.
    PMID: 26648510 DOI: 10.1111/cobi.12667
    We examined the links between the science and policy of habitat corridors to better understand how corridors can be implemented effectively. As a case study, we focused on a suite of landscape-scale connectivity plans in tropical and subtropical Asia (Malaysia, Singapore, and Bhutan). The process of corridor designation may be more efficient if the scientific determination of optimal corridor locations and arrangement is synchronized in time with political buy-in and establishment of policies to create corridors. Land tenure and the intactness of existing habitat in the region are also important to consider because optimal connectivity strategies may be very different if there are few, versus many, political jurisdictions (including commercial and traditional land tenures) and intact versus degraded habitat between patches. Novel financing mechanisms for corridors include bed taxes, payments for ecosystem services, and strategic forest certifications. Gaps in knowledge of effective corridor design include an understanding of how corridors, particularly those managed by local communities, can be protected from degradation and unsustainable hunting. There is a critical need for quantitative, data-driven models that can be used to prioritize potential corridors or multicorridor networks based on their relative contributions to long-term metacommunity persistence.
    Matched MeSH terms: Ecosystem*
  18. Valdiani A, Abdul Kadir M, Said Saad M, Talei D, Omidvar V, Hua CS
    ScientificWorldJournal, 2012;2012:297545.
    PMID: 22701352 DOI: 10.1100/2012/297545
    The ambiguity of crossability in Andrographis paniculata (AP) was pointed out in the present research. Accordingly, the effects of different style length and crossing time on intraspecific crossability of seven AP accessions in 21 possible combinations were investigated. The best results came out between 08:00 to 11:00 h for manual out-crossing of AP, while the time from 12:00 to 18:00 h showed a decreasing trend. Moreover, 12 mm style length was found as the most proper phenological stage in terms of stigmatic receptivity to perform out-crossing in this plant. All in all, AP behaved unlikely in each combination, and a significant difference was observed in crossability of AP accessions (P < 0.01). The lowest and highest crossability rate was found in hybrids 21 (11261NS × 11344K) and 27 (11322PA × 11350T) with 0.25% and 13.33%, respectively. Furthermore, a significant negative relationship between style length and crossibility (r² = 0.762(∗∗)) was recorded in this research. As a final conclusion, crossing time and proper style length can improve the intraspecific crossability in the species, considerably. Despite all the mentioned contrivances, we still believe that a genetic incongruity should be involved as an additional obstacle in crossability of those combinations that failed or responded deficiently to outcrossing.
    Matched MeSH terms: Ecosystem*
  19. Estes JG, Othman N, Ismail S, Ancrenaz M, Goossens B, Ambu LN, et al.
    PLoS ONE, 2012;7(10):e44601.
    PMID: 23071499 DOI: 10.1371/journal.pone.0044601
    The approximately 300 (298, 95% CI: 152-581) elephants in the Lower Kinabatangan Managed Elephant Range in Sabah, Malaysian Borneo are a priority sub-population for Borneo's total elephant population (2,040, 95% CI: 1,184-3,652). Habitat loss and human-elephant conflict are recognized as the major threats to Bornean elephant survival. In the Kinabatangan region, human settlements and agricultural development for oil palm drive an intense fragmentation process. Electric fences guard against elephant crop raiding but also remove access to suitable habitat patches. We conducted expert opinion-based least-cost analyses, to model the quantity and configuration of available suitable elephant habitat in the Lower Kinabatangan, and called this the Elephant Habitat Linkage. At 184 km(2), our estimate of available habitat is 54% smaller than the estimate used in the State's Elephant Action Plan for the Lower Kinabatangan Managed Elephant Range (400 km(2)). During high flood levels, available habitat is reduced to only 61 km(2). As a consequence, short-term elephant densities are likely to surge during floods to 4.83 km(-2) (95% CI: 2.46-9.41), among the highest estimated for forest-dwelling elephants in Asia or Africa. During severe floods, the configuration of remaining elephant habitat and the surge in elephant density may put two villages at elevated risk of human-elephant conflict. Lower Kinabatangan elephants are vulnerable to the natural disturbance regime of the river due to their limited dispersal options. Twenty bottlenecks less than one km wide throughout the Elephant Habitat Linkage, have the potential to further reduce access to suitable habitat. Rebuilding landscape connectivity to isolated habitat patches and to the North Kinabatangan Managed Elephant Range (less than 35 km inland) are conservation priorities that would increase the quantity of available habitat, and may work as a mechanism to allow population release, lower elephant density, reduce human-elephant conflict, and enable genetic mixing.
    Matched MeSH terms: Ecosystem*
  20. Snaddon JL, Turner EC, Fayle TM, Khen CV, Eggleton P, Foster WA
    Biol. Lett., 2012 Jun 23;8(3):397-400.
    PMID: 22188674 DOI: 10.1098/rsbl.2011.1115
    The exceptionally high species richness of arthropods in tropical rainforests hinges on the complexity of the forest itself: that is, on features such as the high plant diversity, the layered nature of the canopy and the abundance and the diversity of epiphytes and litter. We here report on one important, but almost completely neglected, piece of this complex jigsaw-the intricate network of rhizomorph-forming fungi that ramify through the vegetation of the lower canopy and intercept falling leaf litter. We show that this litter-trapping network is abundant and intercepts substantial amounts of litter (257.3 kg ha(-1)): this exceeds the amount of material recorded in any other rainforest litter-trapping system. Experimental removal of this fungal network resulted in a dramatic reduction in both the abundance (decreased by 70.2 ± 4.1%) and morphospecies richness (decreased by 57.4 ± 5.1%) of arthropods. Since the lower canopy levels can contain the highest densities of arthropods, the proportion of the rainforest fauna dependent on the fungal networks is likely to be substantial. Fungal litter-trapping systems are therefore a crucial component of habitat complexity, providing a vital resource that contributes significantly to rainforest biodiversity.
    Matched MeSH terms: Ecosystem*
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links