Affiliations 

  • 1 Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia; Malaysian Palm Oil Board (MPOB), 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
  • 2 Malaysian Palm Oil Board (MPOB), 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
  • 3 Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia. Electronic address: Sivakumar.Manickam@nottingham.edu.my
  • 4 Graphene & Advanced 2D Materials Research Group (GAMRG), School of Science and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
Ultrason Sonochem, 2019 Apr;52:353-363.
PMID: 30555038 DOI: 10.1016/j.ultsonch.2018.12.012

Abstract

This study aimed to formulate a stable palm oil-based water-in-oil (W/O) nano-emulsion. Emphasis was placed on the effects of polyglycerol polyricinoleate (PGPR), medium chain triglyceride (MCT), lecithin and sodium chloride (NaCl) addition towards the stability of nano-emulsion. Among the performed analyses were mean droplet diameter (MDD), dispersity index (DI), critical micelle concentration (CMC), lipid peroxidation, viscosity, sedimentation index (SI) and surface morphology. The most stable optimized palm oil-based W/O nano-emulsion was produced using 61.25 wt% of palm oil, 26.25 wt% of MCT, 2.5 wt% of PGPR and 10 wt% of water (0.5 M of NaCl). The MDD and DI of the obtained W/O nano-emulsion were 143.1 ± 8.8 and 0.131 ± 0.094, respectively. After 2 weeks, no sedimentation was observed in W/O nano-emulsion with MDD and DI were 151.2 ± 6.5 nm and 0.156 ± 0.025 respectively. This study clearly found that polyricinoleate non-polar fatty acids of PGPR bound to non-polar fatty acids of palm oil through van der Waals intermolecular forces. While, polyglycerol polar head of PGPR interacts with water molecules through hydrogen bonding, as well as by the bound glyceride units of palm oil. The addition of NaCl further reduced MDD by 70 nm and improved the stability of nano-emulsion through electrostatic and steric repulsions attributed to the dissociation of Na+ and Cl- ions. This study aids to widen the knowledge and interest on the utilization of palm oil for the generation of W/O nano-emulsion, as well as to better understand the interaction between palm oil and PGPR/NaCl in producing nano-emulsion.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Similar publications