Affiliations 

  • 1 Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia; Malaysian Palm Oil Board (MPOB), 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
  • 2 Malaysian Palm Oil Board (MPOB), 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
  • 3 Graphene & Advanced 2D Materials Research Group (GAMRG), School of Science and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
  • 4 Research Centre for Crystalline Materials (RCCM), School of Science and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
  • 5 Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia; Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam. Electronic address: manickam.sivakumar@utb.edu.bn
Mater Sci Eng C Mater Biol Appl, 2021 Feb;121:111808.
PMID: 33579452 DOI: 10.1016/j.msec.2020.111808

Abstract

This work aimed to evaluate the effects of encapsulated tocotrienols (TRF) and caffeic acid (CA) in water-in-oil-in-water (W/O/W) multiple nanoemulsion with cisplatin towards cancer cells. This work is important considering the limited efficacy of cisplatin due to tumour resistance, as well as its severe side effects. A549 and HEP G2 cancer cell lines were utilised for evaluating the efficacy of the encapsulated W/O/W while HEK 293 normal cell line was used for evaluating the toxicity. TRF, CA and CIS synergistically improved apoptosis in the late apoptotic phase in A549 and HEP G2 by 23.1% and 24.9%, respectively. The generation of ROS was enhanced using TRF:CA:CIS by 16.9% and 30.2% for A549 and HEP G2, respectively. Cell cycle analysis showed an enhanced cell arrest in the G0/G1 phase for both A549 and HEP G2. TRF, CA and CIS led to cell death in A549 and HEP G2. For HEK 293, ~33% cell viability was found when only CIS was used while >95% cell viability was observed when TRF, CA and CIS were used. This study demonstrates that the encapsulated TRF and CA in W/O/W with CIS synergistically improved therapeutic efficacy towards cancer cells, as well as lowered the toxicity effects towards normal cells.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.