Displaying publications 1 - 20 of 25 in total

Abstract:
Sort:
  1. Muhammad Abdul Kadar NN, Ahmad F, Teoh SL, Yahaya MF
    Molecules, 2021 Sep 09;26(18).
    PMID: 34576959 DOI: 10.3390/molecules26185490
    Metabolic syndrome (MetS) is a constellation of risk factors that may lead to a more sinister disease. Raised blood pressure, dyslipidemia in the form of elevated triglycerides and lowered high-density lipoprotein cholesterol, raised fasting glucose, and central obesity are the risk factors that could lead to full-blown diabetes, heart disease, and many others. With increasing sedentary lifestyles, coupled with the current COVID-19 pandemic, the numbers of people affected with MetS will be expected to grow in the coming years. While keeping these factors checked with the polypharmacy available currently, there is no single strategy that can halt or minimize the effect of MetS to patients. This opens the door for a more natural way of controlling the disease. Caffeic acid (CA) is a phytonutrient belonging to the flavonoids that can be found in abundance in plants, fruits, and vegetables. CA possesses a wide range of beneficial properties from antioxidant, immunomodulatory, antimicrobial, neuroprotective, antianxiolytic, antiproliferative, and anti-inflammatory activities. This review discusses the current discovery of the effect of CA against MetS.
    Matched MeSH terms: Caffeic Acids/pharmacology*
  2. Lee SY, Mediani A, Maulidiani M, Khatib A, Ismail IS, Zawawi N, et al.
    J Sci Food Agric, 2018 Jan;98(1):240-252.
    PMID: 28580581 DOI: 10.1002/jsfa.8462
    BACKGROUND: Neptunia oleracea is a plant consumed as a vegetable and which has been used as a folk remedy for several diseases. Herein, two regression models (partial least squares, PLS; and random forest, RF) in a metabolomics approach were compared and applied to the evaluation of the relationship between phenolics and bioactivities of N. oleracea. In addition, the effects of different extraction conditions on the phenolic constituents were assessed by pattern recognition analysis.

    RESULTS: Comparison of the PLS and RF showed that RF exhibited poorer generalization and hence poorer predictive performance. Both the regression coefficient of PLS and the variable importance of RF revealed that quercetin and kaempferol derivatives, caffeic acid and vitexin-2-O-rhamnoside were significant towards the tested bioactivities. Furthermore, principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) results showed that sonication and absolute ethanol are the preferable extraction method and ethanol ratio, respectively, to produce N. oleracea extracts with high phenolic levels and therefore high DPPH scavenging and α-glucosidase inhibitory activities.

    CONCLUSION: Both PLS and RF are useful regression models in metabolomics studies. This work provides insight into the performance of different multivariate data analysis tools and the effects of different extraction conditions on the extraction of desired phenolics from plants. © 2017 Society of Chemical Industry.

    Matched MeSH terms: Caffeic Acids/analysis
  3. Ekeuku SO, Pang KL, Chin KY
    Drug Des Devel Ther, 2021;15:259-275.
    PMID: 33519191 DOI: 10.2147/DDDT.S287280
    Purpose: Caffeic acid is a metabolite of hydroxycinnamate and phenylpropanoid, which are commonly synthesized by all plant species. It is present in various food sources that are known for their antioxidant properties. As an antioxidant, caffeic acid ameliorates reactive oxygen species, which have been reported to cause bone loss. Some studies have highlighted the effects of caffeic acid against bone resorption.

    Methods: A systematic review of the literature was conducted to identify relevant studies on the effects of caffeic acid on bone. A comprehensive search was conducted from July to November 2020 using PubMed, Scopus, Cochrane Library and Web of Science databases. Cellular, animal and human studies reporting the effects of caffeic acid, as a single compound, on bone cells or bone were considered.

    Results: The literature search found 226 articles on this topic, but only 24 articles met the inclusion criteria and were included in this review. The results showed that caffeic acid supplementation reduced osteoclastogenesis and bone resorption, possibly through its antioxidant potential and increased expression of osteoblast markers. However, some studies showed that caffeic acid did not affect bone resorption in ovariectomized rats and might impair bone mechanical properties in normal rats.

    Conclusion: Caffeic acid potentially regulates the bone remodelling process by inhibiting osteoclastogenesis and bone resorption, as well as osteoblast apoptosis. Thus, it has medicinal values against bone diseases.

    Matched MeSH terms: Caffeic Acids/pharmacology*; Caffeic Acids/chemistry
  4. Hasyima Omar M, González Barrio R, Pereira-Caro G, Almutairi TM, Crozier A
    Int J Food Sci Nutr, 2021 Jun;72(4):511-517.
    PMID: 33238790 DOI: 10.1080/09637486.2020.1850650
    3',4'-Dihydroxycinnamic acid (aka caffeic acid) is a common dietary component found in a variety of plant-derived food products either in a free form or esterified as in chlorogenic acids such as 5-O-caffeoylquinic acid. The dihydroxycinnamate is produced principally by hydrolysis in the colon of 5-O-caffeoylquinic acid and other caffeoylquinic acid esters, and is catabolised by the resident microbiota prior to absorption. In the present study 3',4'-dihydroxycinnamic acid was incubated in vitro, with or without glucose, under anaerobic conditions with faecal slurries obtained from five volunteers. The main resultant catabolites to accumulate were 3-(3',4'-dihydroxyphenyl)propanoic acid (aka dihydrocaffeic acid), 3-(3'-hydroxyphenyl)propanoic acid and phenylacetic acid. Both the rate of degradation of the hydroxycinnamate substrate and the catabolite profile varied between the faecal samples from the individual volunteers. Overall there was no clear cut effect when glucose was added to incubation medium.
    Matched MeSH terms: Caffeic Acids/metabolism*; Caffeic Acids/chemistry
  5. Gonawan FN, Bakar PNMA, Kamaruddin AH
    J Oleo Sci, 2021 Oct 05;70(10):1437-1445.
    PMID: 34497176 DOI: 10.5650/jos.ess21010
    The Lipase-catalyzed synthesis of glyceryl monocaffeate (GMC) in choline chloride-urea of natural deep eutectic solvent (NADES) media is reported to provide amphiphilic character to caffeic acid (CA). The modification of CA into GMC could potentially increase its solubility and widen the application of CA's biological activities in water and oil-based systems. The high conversion was achieved when the reaction was carried out with the addition of more than 20 %v/v water, at a high molar ratio of glycerol and 40°C. It was found that the lipase-catalyzed transesterification of ethyl caffeate (EC) and glycerol in choline chloride-urea of DES media obeyed ping-pong bi-bi mechanism with Vmax = 10.9 mmol.min-1, KmEC = 126.5 mmol and KmGly = 1842.7 mmol.
    Matched MeSH terms: Caffeic Acids/chemical synthesis*; Caffeic Acids/chemistry*
  6. Perumal S, Mahmud R, Ramanathan S
    Nat Prod Res, 2015;29(18):1766-9.
    PMID: 25571920 DOI: 10.1080/14786419.2014.999242
    Euphorbia hirta (L.) plant is traditionally used in Malaysia for the treatment of gastrointestinal, bronchial and respiratory ailments caused by nosocomial infectious agents. Bioactivity-guided fractionation of the methanol extract of the aerial parts of E. hirta and analysis using high-performance liquid chromatography have led to the isolation of two antibacterial compounds. These compounds were identified as caffeic acid (CA) and (-)-epicatechin 3-gallate (ECG) based on spectroscopic analyses and comparison with previously published data. Using broth microdilution method, both ECG and CA had demonstrated significant minimum inhibitory concentration of 15.6 and 31.3 μg/mL respectively, against Pseudomonas aeruginosa. Time-kill assessment of ECG and CA displayed bactericidal effect on P. aeruginosa cells.
    Matched MeSH terms: Caffeic Acids/isolation & purification; Caffeic Acids/pharmacology*
  7. Al-Abd NM, Nor ZM, Junaid QO, Mansor M, Hasan MS, Kassim M
    Pathog Glob Health, 2017 Oct;111(7):388-394.
    PMID: 29065795 DOI: 10.1080/20477724.2017.1380946
    Lymphatic filariasis (LF) is a vector borne disease caused by parasitic worms such as Wuchereria bancrofti, Brugia malayi and B. timori, which are transmitted by mosquitoes. Current therapeutics to treat LF are mainly microfilarcidal, and lack activity against adult worms. This set back, poses a challenge for the control and elimination of filariasis. Thus, in this study the activities of caffeic acid phenethyl ester (CAPE) against the filarial worm B. pahangi and its bacterial endosymbiont, Wolbachia were evaluated. Different concentrations (2, 5, 10, 15, 20 μg/ml) of CAPE were used to assess its effects on motility, viability and microfilarial (mf) production of B. pahangi in vitro. Anti-Wolbachial activity of CAPE was measured in worms by quantification of Wolbachial wsp gene copy number using real-time polymerase chain reaction. Our findings show that CAPE was found to significantly reduce adult worm motility, viability, and mf release both in vitro and in vivo. 20 μg/ml of CAPE halts the release of mf in vitro by day 6 of post treatment. Also, the number of adult worms recovered in vivo were reduced significantly during and after treatment with 50 mg/kg of CAPE relative to control drugs, diethylcarbamazine and doxycycline. Real time PCR based on the Wolbachia ftsZ gene revealed a significant reduction in Wolbachia copy number upon treatment. Anti-Wolbachia and antifilarial properties of CAPE require further investigation as an alternative strategy to treat LF.
    Matched MeSH terms: Caffeic Acids/administration & dosage; Caffeic Acids/therapeutic use*
  8. Raviadaran R, Ng MH, Chandran D, Ooi KK, Manickam S
    Mater Sci Eng C Mater Biol Appl, 2021 Feb;121:111808.
    PMID: 33579452 DOI: 10.1016/j.msec.2020.111808
    This work aimed to evaluate the effects of encapsulated tocotrienols (TRF) and caffeic acid (CA) in water-in-oil-in-water (W/O/W) multiple nanoemulsion with cisplatin towards cancer cells. This work is important considering the limited efficacy of cisplatin due to tumour resistance, as well as its severe side effects. A549 and HEP G2 cancer cell lines were utilised for evaluating the efficacy of the encapsulated W/O/W while HEK 293 normal cell line was used for evaluating the toxicity. TRF, CA and CIS synergistically improved apoptosis in the late apoptotic phase in A549 and HEP G2 by 23.1% and 24.9%, respectively. The generation of ROS was enhanced using TRF:CA:CIS by 16.9% and 30.2% for A549 and HEP G2, respectively. Cell cycle analysis showed an enhanced cell arrest in the G0/G1 phase for both A549 and HEP G2. TRF, CA and CIS led to cell death in A549 and HEP G2. For HEK 293, ~33% cell viability was found when only CIS was used while >95% cell viability was observed when TRF, CA and CIS were used. This study demonstrates that the encapsulated TRF and CA in W/O/W with CIS synergistically improved therapeutic efficacy towards cancer cells, as well as lowered the toxicity effects towards normal cells.
    Matched MeSH terms: Caffeic Acids
  9. Khan MSS, Asif M, Basheer MKA, Kang CW, Al-Suede FS, Ein OC, et al.
    Eur J Pharmacol, 2017 May 15;803:24-38.
    PMID: 28322833 DOI: 10.1016/j.ejphar.2017.03.031
    Despite many treatment options, cancer remains a growing problem and has become the second leading cause of death globally. Here, we present fluorescence molecular tomography (FMT) data regarding the reversion of third generation co-cultured U87+DBTRG and patient-derived GBM tumor model after treatment with novel IL17A inhibitor named FLVM and FLVZ (organic derivatives of caffeic acid). FMT was used to determine tumor angiogenesis volume (assessment of number of blood vessel; the expression of angiogenic factors CD34 and other angiogenic cancer bio-markers) in U87+DBTRG and patient-derived gliomas. Immunohistochemistry was used to determine microvessel density [CD34], and cell proliferation [Ki67]. Western blot was used to assess the interleukin 17A [IL17A], vascular endothelial growth factor [VEGF] and hypoxia-inducible factor-1α [HIF-1α]. Antibody array was used to assess the cancer bio-markers in co-cultured U87+DBTRG gliomas. Animal survival was found to be significantly increased (P<0.0001) after FLVM treatment compared with control-IL17A. After FMT detection, FLVM, administered orally, was found to decrease tumor growth (P<0.0001). FLVM and FLVZ administration resulted in significant decreases in tumor hypoxia [HIF-1α (P<0.05)], angiogenesis [CD34 (P<0.05)], VEGF, IL17A and cell proliferation [Ki67 (P<0.05)] and caused a significant increase of Bax, caspase and FasL (P<0.05), compared with untreated animals. Additionally, Leptin, LPL (P<0.01), FFA (P<0.05) and adipogenesis were downregulated and no additive toxicity was found in mice except calorie-restriction like effect. Use of FLVM can be considered as a novel inhibitor of IL17A for the treatment of human gliomas.
    Matched MeSH terms: Caffeic Acids/pharmacology; Caffeic Acids/therapeutic use; Caffeic Acids/chemistry
  10. Wong FC, Yong AL, Ting EP, Khoo SC, Ong HC, Chai TT
    Iran J Pharm Res, 2014;13(4):1409-15.
    PMID: 25587331
    The purpose of this investigation was to determine the antioxidant potentials and anti-glucosidase activities of six tropical medicinal plants. The levels of phenolic constituents in these medicinal plants were also quantified and compared. Antioxidation potentials were determined colorimetrically for scavenging activities against DPPH and NO radicals. Metal chelating assay was based on the measurement of iron-ferrozine absorbance at 562 nm. Anti-diabetic potentials were measured by using α-glucosidase as target enzyme. Medicinal plants' total phenolic, total flavonoid and hydroxycinnamic acid contents were determined using spectrophotometric methods, by comparison to standard plots prepared using gallic acid, quercetin and caffeic acid standards, respectively. Radical scavenging and metal chelating activities were detected in all medicinal plants, in concentration-dependent manners. Among the six plants tested, C. nutans, C. formosana and H. diffusa were found to possess α-glucosidase inhibitory activities. Spectrophotometric analysis indicated that the total phenolic, total flavonoid and hydroxycinnamic acid contents ranged from 12.13-21.39 mg GAE per g of dry sample, 1.83-9.86 mg QE per g of dry sample, and 0.91-2.74 mg CAE per g of dry sample, respectively. Our results suggested that C. nutans and C. formosana could potentially be used for the isolation of potent antioxidants and anti-diabetic compounds. To the best of our knowledge, this study represents the first time that C. nutans (Acanthaceae family) was reported in literature with glucosidase inhibition activity.
    Matched MeSH terms: Caffeic Acids
  11. Elnager A, Hassan R, Idris Z, Mustafa Z, Wan-Arfah N, Sulaiman SA, et al.
    Biomed Res Int, 2015;2015:627471.
    PMID: 25664321 DOI: 10.1155/2015/627471
    Background. Caffeic acid phenethyl ester (CAPE) has been reported to possess time-dependent fibrinolytic activity by in vitro assay. This study is aimed at investigating fibrinolytic dose-dependent activity of CAPE using in vitro assays. Methods. Standardized human whole blood (WB) clots were incubated in either blank controls or different concentrations of CAPE (3.75, 7.50, 15.00, 22.50, and 30.00 mM). After 3 hours, D-dimer (DD) levels and WB clot weights were measured for each concentration. Thromboelastography (TEG) parameters were recorded following CAPE incubation, and fibrin morphology was examined under a confocal microscope. Results. Overall, mean DD (μg/mL) levels were significantly different across samples incubated with different CAPE concentrations, and the median pre- and postincubation WB clot weights (grams) were significantly decreased for each CAPE concentration. Fibrin removal was observed microscopically and indicated dose-dependent effects. Based on the TEG test, the Ly30 fibrinolytic parameter was significantly different between samples incubated with two different CAPE concentrations (15.0 and 22.50 mM). The 50% effective dose (ED50) of CAPE (based on DD) was 1.99 mg/mL. Conclusions. This study suggests that CAPE possesses fibrinolytic activity following in vitro incubation and that it has dose-dependent activities. Therefore, further investigation into CAPE as a potential alternative thrombolytic agent should be conducted.
    Matched MeSH terms: Caffeic Acids/pharmacology*
  12. Cheah HL, Lim V, Sandai D
    PLoS One, 2014;9(4):e95951.
    PMID: 24781056 DOI: 10.1371/journal.pone.0095951
    Candida albicans is an opportunistic pathogen that causes candidiasis in humans. In recent years, metabolic pathways in C. albicans have been explored as potential antifungal targets to treat candidiasis. The glyoxylate cycle, which enables C. albicans to survive in nutrient-limited host niches and its. Key enzymes (e.g., isocitrate lyase (ICL1), are particularly attractive antifungal targets for C. albicans. In this study, we used a new screening approach that better reflects the physiological environment that C. albicans cells experience during infection to identify potential inhibitors of ICL. Three compounds (caffeic acid (CAFF), rosmarinic acid (ROS), and apigenin (API)) were found to have antifungal activity against C. albicans when tested under glucose-depleted conditions. We further confirmed the inhibitory potential of these compounds against ICL using the ICL enzyme assay. Lastly, we assessed the bioavailability and toxicity of these compounds using Lipinski's rule-of-five and ADMET analysis.
    Matched MeSH terms: Caffeic Acids/pharmacology
  13. Tambuwala MM, Kesharwani P, Shukla R, Thompson PD, McCarron PA
    Pathol Res Pract, 2018 Nov;214(11):1909-1911.
    PMID: 30170869 DOI: 10.1016/j.prp.2018.08.020
    Fibrosis is known to be the hallmarks of chronic inflammation of the bowel. Epithelial damage due to inflammation compromises the barrier function of the gastrointestinal tract. This barrier dysfunction leads to further spread of inflammation resulting in a chronic state of inflammation. This chronic inflammation leads to development of fibrosis, which has very limited therapeutic options and usually requires surgical removal of the affected tissue. Our previous work has shown that Caffeic acid phenethyl ester (CAPE) is a naturally occurring anti-inflammatory agent, found in propolis, has been found to be protective in experimental colitis via enhancement of epithelial barrier function. However, the impact of CAPE on resolution of fibrosis in the long-term is unknown. The aim of this follow up study was to investigate the effect of CAPE on colon fibrosis in a chronic model of Dextran sulphate sodium induced colitis in mice. Dextran sulphate sodium (DSS) 2.5% w/v was administered in drinking water to induce colitis in C57/BL6 mice for 5 days on the 6th day DSS was stopped and test group mice were treated with intraperitoneal administration of CAPE (30 mg kg-1 day-1) for a further 7 days. Disease activity index (DAI) score, colon length and tissue histology and level of tissue fibrosis was observed. CAPE-treated mice had significantly lower levels of DAI, tissue inflammation scores and fibrosis as compared with control group. Our results show that CAPE is effective in resolving colon fibrosis in chronic inflammation. Thus, we can conclude CAPE could be a potential therapeutic agent for further clinical investigations for treatment of fibrosis in inflammatory bowel diseases in humans.
    Matched MeSH terms: Caffeic Acids/pharmacology*
  14. Gholivand S, Lasekan O, Tan CP, Abas F, Wei LS
    Food Chem, 2017 Jun 01;224:365-371.
    PMID: 28159281 DOI: 10.1016/j.foodchem.2016.12.075
    The solubility limitations of phenolic acids in many lipidic environments are now greatly improved by their enzymatic esterification in ionic liquids (ILs). Herein, four different ILs were tested for the esterification of dihydrocaffeic acid with hexanol and the best IL was selected for the synthesis of four other n-alkyl esters with different chain-lengths. The effect of alkyl chain length on the anti-oxidative properties of the resulted purified esters was investigated using β-carotene bleaching (BCB) and free radical scavenging method DPPH and compared with butylated hydroxytoluene (BHT) as reference compound. All four esters (methyl, hexyl, dodecyl and octadecyl dihydrocaffeates) exhibited relatively strong radical scavenging abilities. The scavenging activity of the test compounds was in the following order: methyl ester>hexyl ester⩾dodecyl ester>octadecyl ester>BHT while the order for the BCB anti-oxidative activity was; BHT>octadecyl ester>dodecyl ester>hexyl ester>methyl ester.
    Matched MeSH terms: Caffeic Acids/chemistry*
  15. Kassim M, Mansor M, Kamalden TA, Shariffuddin II, Hasan MS, Ong G, et al.
    Shock, 2014 Aug;42(2):154-60.
    PMID: 24667629 DOI: 10.1097/SHK.0000000000000179
    Excessive free radical production by immune cells has been linked to cell death and tissue injury during sepsis. Peroxynitrite is a short-lived oxidant and a potent inducer of cell death that has been identified in several pathological conditions. Caffeic acid phenethyl ester (CAPE) is an active component of honeybee products and exhibits antioxidant, anti-inflammatory, and immunomodulatory activities. The present study examined the ability of CAPE to scavenge peroxynitrite in RAW 264.7 murine macrophages stimulated with lipopolysaccharide/interferon-γ that was used as an in vitro model. Conversion of 123-dihydrorhodamine to its oxidation product 123-rhodamine was used to measure peroxynitrite production. Two mouse models of sepsis (endotoxemia and cecal ligation and puncture) were used as in vivo models. The level of serum 3-nitrotyrosine was used as an in vivo marker of peroxynitrite. The results demonstrated that CAPE significantly improved the viability of lipopolysaccharide/interferon-γ-treated RAW 264.7 cells and significantly inhibited nitric oxide production, with effects similar to those observed with an inhibitor of inducible nitric oxide synthase (1400W). In addition, CAPE exclusively inhibited the synthesis of peroxynitrite from the artificial substrate SIN-1 and directly prevented the peroxynitrite-mediated conversion of dihydrorhodamine-123 to its fluorescent oxidation product rhodamine-123. In both sepsis models, CAPE inhibited cellular peroxynitrite synthesis, as evidenced by the absence of serum 3-nitrotyrosine, an in vivo marker of peroxynitrite. Thus, CAPE attenuates the inflammatory responses that lead to cell damage and, potentially, cell death through suppression of the production of cytotoxic molecules such as nitric oxide and peroxynitrite. These observations provide evidence of the therapeutic potential of CAPE treatment for a wide range of inflammatory disorders.
    Matched MeSH terms: Caffeic Acids/administration & dosage; Caffeic Acids/pharmacology*; Caffeic Acids/therapeutic use
  16. Pangestika I, Oksal E, Tengku Muhammad TS, Amir H, Syamsumir DF, Wahid MEA, et al.
    Saudi J Biol Sci, 2020 Aug;27(8):1947-1960.
    PMID: 32714018 DOI: 10.1016/j.sjbs.2020.06.010
    One of the pathways to reduce cholesterol production in the liver is through the inhibition of HMG-Coa reductase (HMGCR) by current drugs, statins. However, these have side effects if consumed in prolonged periods. Tangeretin and trans-ethyl caffeate as alternative drugs in reducing hypercholesterolemia and preventing atherosclerosis have never been reported. Their effects on inhibiting HMGCR activity were investigated through enzymatic method (in vitro and in vivo). The toxicity property was analyzed on the Serum Glutamate Oxalate Transaminase (SGOT)/Serum Glutamate Piruvate Transaminase (SGPT) levels and rat liver histology. The results showed that both compounds inhibited HMGCR activity significantly compare to the control simvastatin (p 
    Matched MeSH terms: Caffeic Acids
  17. Gemiarto AT, Ninyio NN, Lee SW, Logis J, Fatima A, Chan EW, et al.
    Antonie Van Leeuwenhoek, 2015 Aug;108(2):491-504.
    PMID: 26059863 DOI: 10.1007/s10482-015-0503-6
    The emergence of antibiotic-resistant bacterial pathogens, especially Gram-negative bacteria, has driven investigations into suppressing bacterial virulence via quorum sensing (QS) inhibition strategies instead of bactericidal and bacteriostatic approaches. Here, we investigated several bee products for potential compound(s) that exhibit significant QS inhibitory (QSI) properties at the phenotypic and molecular levels in Chromobacterium violaceum ATCC 12472 as a model organism. Manuka propolis produced the strongest violacein inhibition on C. violaceum lawn agar, while bee pollen had no detectable QSI activity and honey had bactericidal activity. Fractionated manuka propolis (pooled fraction 5 or PF5) exhibited the largest violacein inhibition zone (24.5 ± 2.5 mm) at 1 mg dry weight per disc. In C. violaceum liquid cultures, at least 450 µg/ml of manuka propolis PF5 completely inhibited violacein production. Gene expression studies of the vioABCDE operon, involved in violacein biosynthesis, showed significant (≥two-fold) down-regulation of vioA, vioD and vioE in response to manuka propolis PF5. A potential QSI compound identified in manuka propolis PF5 is a hydroxycinnamic acid-derivative, isoprenyl caffeate, with a [M-H] of 247. Complete violacein inhibition in C. violaceum liquid cultures was achieved with at least 50 µg/ml of commercial isoprenyl caffeate. In silico docking experiments suggest that isoprenyl caffeate may act as an inhibitor of the violacein biosynthetic pathway by acting as a competitor for the FAD-binding pockets of VioD and VioA. Further studies on these compounds are warranted toward the development of anti-pathogenic drugs as adjuvants to conventional antibiotic treatments, especially in antibiotic-resistant bacterial infections.
    Matched MeSH terms: Caffeic Acids/metabolism*
  18. Chua LS, Lau CH, Chew CY, Ismail NIM, Soontorngun N
    Phytomedicine, 2018 Jan 15;39:49-55.
    PMID: 29433683 DOI: 10.1016/j.phymed.2017.12.015
    BACKGROUND: Orthosiphon aristatus (Blume) Miq. is a medicinal herb which is traditionally used for the treatment of diabetes and kidney diseases in South East Asia. Previous studies reported higher concentration of antioxidative phytochemicals, especially rosmarinic acid (ester of caffeic acid) and other caffeic acid derivatives in this plant extract than the other herbs such as rosemary and sage which are usually used as raw materials to produce rosmarinic acid supplement in the market.

    PURPOSE: The phytochemical profile of O. aristatus was investigated at different storage durations for quality comparison.

    METHODS: The phytochemicals were extracted from the leaves and stems of O. aristatus using a reflux reactor. The extracts were examined for total phenolic and flavonoid contents, as well as their antioxidant capacities, in terms of radical scavenging, metal chelating and reducing power. The phytochemical profiles were also analyzed by unsupervised principal component analysis and hierarchical cluster analysis, in relation to the factor of storage at 4 °C for 5 weeks.

    RESULTS: The leaf extract was likely to have more phytochemicals than stem extract, particularly caffeic acid derivatives including glycosylated and alkylated caffeic acids. This explains higher ratio of total phenolic content to total flavonoid content with higher antioxidant capacities for the leaf extracts. Rosmarinic acid dimer and salvianolic acid B appeared to be the major constituents, possibly contributing to the previously reported pharmacological properties. However, the phytochemical profiles were found changing, even though the extracts were stored in the refrigerator (4 °C). The change was significantly observed at the fifth week based on the statistical pattern recognition technique.

    CONCLUSION: O. aristatus could be a promising source of rosmarinic acid and its dimer, as well as salvianolic acid B with remarkably antioxidant properties. The phytochemical profile was at least stable for a month stored at 4 °C. It is likely to be a good choice of herbal tea with comparable radical scavenging activity, but lower caffeine content than other tea samples.

    Matched MeSH terms: Caffeic Acids/analysis; Caffeic Acids/chemistry
  19. Ghasemzadeh A, Nasiri A, Jaafar HZ, Baghdadi A, Ahmad I
    Molecules, 2014 Oct 30;19(11):17632-48.
    PMID: 25361426 DOI: 10.3390/molecules191117632
    In the current study, changes in secondary metabolite synthesis and the pharmaceutical quality of sabah snake grass leaves and buds were considered in relation to plant age (1 month, 6 months, and 1 year old). The activity of the enzyme chalcone synthase (CHS, EC 2.3.1.74) was measured, as it is a key enzyme for flavonoid production. Significant differences in total flavonoid (TF) production were observed between the three plant growth periods and the different plant parts. The highest contents of TF (6.32 mg/g dry weight [DW]) and total phenolic (TP) (18.21 mg/g DW) were recorded in 6-month-old buds. Among the flavonoids isolated in this study the most important ones based on concentration were from high to low as follows: catechin > quercetin > kaempferol > luteolin. Production of phenolic acids increased from 1 to 6 months, but after 6 months up to 1 year of age, they decreased significantly. The highest contents of caffeic acid (0.307 mg/g DW) and gallic acid (5.96 mg/g DW) were recorded in 1-year and 6-month-old buds, respectively. The lowest and highest activity of CHS was recorded in 1-month and 6-month-old buds with values of 3.6 and 9.5 nkat/mg protein, respectively. These results indicate that the increment in flavonoids and phenolic acids in 6-month-old buds can be attributed to an increase in CHS activity. The highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) activity was observed in the extract of 1-year-old buds followed by 6-month-old buds, with 50% of free radical scavenging (IC50) values of 64.6 and 73.5 µg/mL, respectively. Interestingly, a ferric reducing antioxidant power (FRAP) assay showed a higher activity in 6-month-old buds (488 μM of Fe(II)/g) than in 1-year-old buds (453 μM of Fe(II)/g), in contrast to the DPPH result. Significant correlations (p < 0.05) were observed between CHS enzyme activity and FRAP activity, TF, catechin, and kaempferol content. Extracts of 6-month-old bud exhibited a significant in vitro anticancer activity against HeLa cancer cells with IC50 value of 56.8 µg/mL. These results indicate that early harvesting of snake grass (6-month-old) may yield increased concentrations of secondary metabolites, which are potent antioxidant compounds.
    Matched MeSH terms: Caffeic Acids/chemistry
  20. Koriem KM, Abdelhamid AZ, Younes HF
    Toxicol. Mech. Methods, 2013 Feb;23(2):134-43.
    PMID: 22992185 DOI: 10.3109/15376516.2012.730561
    Caffeic acid (CA) (3,4-dihydroxycinnamic acid) is among the major hydroxycinnamic acids. Hydroxycinnamic acid is the major subgroup of phenolic compounds. Methamphetamine (METH) is a potent addictive psychostimulant. Chronic use and acute METH intoxication can cause substantial medical consequences, including spleen, kidney, liver and heart. The objective of the present study was to evaluate the antioxidant activity of CA to protect against oxidative stress and DNA damage to various organs in METH toxicity. Thirty-two male Sprague Dawley (SD) rats were divided into four equal groups: group 1 was injected (i.p) with saline (1 mL/kg) while groups 2,3 and 4 were injected (i.p) with METH (10 mg/kg) twice a day over five days period. Where 100 & 200 mg/kg of CA were injected (i.p) into groups 3 and 4, respectively one day before exposure to METH injections. Tissue antioxidants and DNA content were evaluated in different tissues. METH decreased glutathione (GSH) and glutathione peroxidase (GPx) levels while increased malondialdehyde (MDA), catalase (CAT) and protein carbonyl levels in brain (hypothalamus), liver, and kidney tissues of rats. METH increased hyperdiploidy in these tissues and DNA damage results. Prior treatment of CA to animals exposed to METH restores the above parameters to the normal levels and preserves the DNA content of these tissues. These results were supported by histopathological investigations. In conclusion, METH induced oxidative stress and DNA damage and pretreatment of CA before METH injections prevented tissue oxidative stress and DNA damage in METH-treated animals.
    Matched MeSH terms: Caffeic Acids/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links