Affiliations 

  • 1 Advanced Oleochemical Technology Division (AOTD), Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia. Electronic address: sumaiyah@mpob.gov.my
  • 2 Advanced Oleochemical Technology Division (AOTD), Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
Colloids Surf B Biointerfaces, 2023 Jan;221:113025.
PMID: 36403417 DOI: 10.1016/j.colsurfb.2022.113025

Abstract

Oil-in-water (o/w) emulsion is utilized as an insecticide delivery system for mosquito control. However, evaporation inhibition adjuvant is needed to prevent fog drift, inhibit release of insecticidal actives and prolong suspension time. In the current study, we evaluated the effect of different short-chain alcohols, namely, propylene glycol, 1,3-propanediol, glycerol and crude glycerol, as adjuvants on the physicochemical properties of d-phenothrin o/w emulsion system. The bioactivity of optimized formulations containing 20 wt% glycerol (D1), 20 wt% propylene glycol (D2) and without added alcohol (negative control) were tested against larvae, pupae and adult Aedes aegypti (Ae. aegypti). It was found that propylene glycol produced smaller droplets at lower concentrations but poor long-term stability at higher concentrations, whereas glycerol had an appreciable effect on initial droplet size and stability with increasing concentration. According to the dose-response bioassays and room size chamber testing, the highest larvicidal, pupicidal and adulticidal activities were observed with D2, followed by D1 and negative control. Overall, the above study demonstrated improved emulsion stabilities and potency against Ae. aegypti larvae, pupae and adults using glycerol as adjuvant for effective mosquito control.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.