Affiliations 

  • 1 Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
  • 2 Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia. shamala@mpob.gov.my
Braz J Microbiol, 2020 Sep;51(3):919-929.
PMID: 32078730 DOI: 10.1007/s42770-020-00241-0

Abstract

Both Gram-positive and Gram-negative bacteria can take up exogenous DNA when they are in a competent state either naturally or artificially. However, the thick peptidoglycan layer in Gram-positive bacteria's cell wall is considered as a possible barrier to DNA uptake. In the present work, two transformation techniques have been evaluated in assessing the protocol's ability to introduce foreign DNA, pBBRGFP-45 plasmid which harbors kanamycin resistance and green fluorescent protein (GFP) genes into a Gram-positive bacterium, Bacillus cereus EB2. B. cereus EB2 is an endophytic bacterium, isolated from oil palm roots. A Gram-negative bacterium, Pseudomonas aeruginosa EB35 was used as a control sample for both transformation protocols. The cells were made competent using respective chemical treatment to Gram-positive and Gram-negative bacteria, and kanamycin concentration in the selective medium was also optimized. Preliminary findings using qualitative analysis of colony polymerase chain reaction (PCR)-GFP indicated that the putative positive transformants for B. cereus EB2 were acquired using the second transformation protocol. The positive transformants were then verified using molecular techniques such as observation of putative colonies on specific media under UV light, plasmid extraction, and validation analyses, followed by fluorescence microscopy. Conversely, both transformation protocols were relatively effective for introduction of plasmid DNA into P. aeruginosa EB35. Therefore, this finding demonstrated the potential of chemically prepared competent cells and the crucial step of heat-shock in foreign DNA transformation process of Gram-positive bacterium namely B. cereus was required for successful transformation.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.