Affiliations 

  • 1 Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
  • 2 Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia; School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia. Electronic address: subash@unimap.edu.my
  • 3 Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia; School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra, Arau 02600, Perlis, Malaysia
  • 4 Department of Biological Engineering, College of Engineering, Inha University, Incheon 402-751, Republic of Korea
  • 5 Centre of Innovative Nanostructure & Nanodevices, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
Biosens Bioelectron, 2019 Apr 15;131:128-135.
PMID: 30826647 DOI: 10.1016/j.bios.2019.02.006

Abstract

This article is clearly presenting the development of a biosensor for human factor IX (FIX) to diagnose the blood clotting deficiency, a so-called 'Royal disease' using an interdigitated electrode (IDE) with the zinc oxide surface modification. Gold nano-urchins (GNUs) with 60 nm in diameter was integrated into a streptavidin-biotinylated aptamer strategy to enhance the active surface area. Two different comparative studies have been done to validate the system to be practiced in the current work holds with a higher capability for the high-performance sense. Whereby, the presence and absence of GNUs in the aptasensing system for FIX interaction were investigated using the amperometric measurement, using a linear sweep voltage of 0-2 V at 0.01 V step voltage. The detection limit was 6 pM based on 3σ calculation when GNUs integrated aptamer assay was utilized for FIX detection, which shows 8 folds sensitivity enhancement comparing the condition in the absence of GNU and 50 folds higher than sensitive radio-isotope and surface plasmon resonance assays. Albeit, the surface and molecular characterizations were well demonstrated by scanning electron microscopy, atomic force microscopy, 3D nano-profilometry and further supports were rendered by UV-Vis spectroscopy and Enzyme-linked apta-sorbent assay (ELASA). Furthermore, the spiking experiment was done by FIX-spikes in human blood serum in order to demonstrate the stability with a higher non-fouling.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.