Affiliations 

  • 1 Center for Neuroscience Service and Research, School of Medical Sciences, Center for Neuroscience Service and Research, Universiti Sains Malaysia, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia ; Department of Neurosciences, School of Medical Sciences, Center for Neuroscience Service and Research, Universiti Sains Malaysia, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia
  • 2 Department of Neurosciences, School of Medical Sciences, Center for Neuroscience Service and Research, Universiti Sains Malaysia, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia
Asian J Neurosurg, 2014 Jul-Sep;9(3):144-52.
PMID: 25685205 DOI: 10.4103/1793-5482.142734

Abstract

BACKGROUND: Magnetoencephalography (MEG) is a method of functional neuroimaging. The concomitant use of MEG and electrocorticography has been found to be useful in elucidating neural oscillation and network, and to localize epileptogenic zone and functional cortex. We describe our early experience using MEG in neurosurgical patients, emphasizing on its impact on patient management as well as the enrichment of our knowledge in neurosciences.
MATERIALS AND METHODS: A total of 10 subjects were included; five patients had intraaxial tumors, one with an extraaxial tumor and brain compression, two with arteriovenous malformations, one with cerebral peduncle hemorrhage and one with sensorimotor cortical dysplasia. All patients underwent evoked and spontaneous MEG recordings. MEG data was processed at band-pass filtering frequency of between 0.1 and 300 Hz with a sampling rate of 1 kHz. MEG source localization was performed using either overdetermined equivalent current dipoles or underdetermined inversed solution. Neuromag collection of events software was used to study brain network and epileptogenic zone. The studied data were analyzed for neural oscillation in three patients; brain network and clinical manifestation in five patients; and for the location of epileptogenic zone and eloquent cortex in two patients.
RESULTS: We elucidated neural oscillation in three patients. One demonstrated oscillatory phenomenon on stimulation of the motor-cortex during awake surgery, and two had improvement in neural oscillatory parameters after surgery. Brain networks corresponding to clinico-anatomical relationships were depicted in five patients, and two networks were illustrated here. Finally, we demonstrated epilepsy cases in which MEG data was found to be useful in localizing the epileptogenic zones and functional cortices.
CONCLUSION: The application of MEG while enhancing our knowledge in neurosciences also has a useful role in epilepsy and awake surgery.
KEYWORDS: Awake craniotomy; brain network; epilepsy; magnetoencephalography; neural oscillation

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.