Affiliations 

  • 1 Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
  • 2 Department of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India
Acta Crystallogr E Crystallogr Commun, 2019 Oct 01;75(Pt 10):1472-1478.
PMID: 31636978 DOI: 10.1107/S2056989019012581

Abstract

In the title tri-substituted thio-urea derivative, C13H18N2O3S, the thione-S and carbonyl-O atoms lie, to a first approximation, to the same side of the mol-ecule [the S-C-N-C torsion angle is -49.3 (2)°]. The CN2S plane is almost planar (r.m.s. deviation = 0.018 Å) with the hy-droxy-ethyl groups lying to either side of this plane. One hy-droxy-ethyl group is orientated towards the thio-amide functionality enabling the formation of an intra-molecular N-H⋯O hydrogen bond leading to an S(7) loop. The dihedral angle [72.12 (9)°] between the planes through the CN2S atoms and the 4-tolyl ring indicates the mol-ecule is twisted. The experimental mol-ecular structure is close to the gas-phase, geometry-optimized structure calculated by DFT methods. In the mol-ecular packing, hydroxyl-O-H⋯O(hydrox-yl) and hydroxyl-O-H⋯S(thione) hydrogen bonds lead to the formation of a supra-molecular layer in the ab plane; no directional inter-actions are found between layers. The influence of the specified supra-molecular inter-actions is apparent in the calculated Hirshfeld surfaces and these are shown to be attractive in non-covalent inter-action plots; the inter-action energies point to the important stabilization provided by directional O-H⋯O hydrogen bonds.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.