Affiliations 

  • 1 School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Johor, Malaysia
  • 2 School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Johor, Malaysia. Electronic address: aishahaj@utm.my
J Environ Manage, 2020 Mar 15;258:110050.
PMID: 31929077 DOI: 10.1016/j.jenvman.2019.110050

Abstract

Photocatalytic degradation is among the promising technology for removal of various dyes and organic contaminants from environment owing to its excellent catalytic activity, low energy utilization, and low cost. As one of potential photocatalysts, Fe2O3 has emerged as an important material for degradation of numerous dyes and organic contaminants caused by its tolerable band gap, wide harvesting of visible light, good stability and recyclability. The present review thoroughly summarized the classification, synthesis route of Fe2O3 with different morphologies, and several modifications of Fe2O3 for improved photocatalytic performance. These include the incorporation with supporting materials, formation of heterojunction with other semiconductor photocatalysts, as well as the fabrication of Z-scheme. Explicitly, the other photocatalytic applications of Fe2O3, including for removal of heavy metals, reduction of CO2, evolution of H2, and N2 fixation are also deliberately discussed to further highlight the huge potential of this catalyst. Moreover, the prospects and future challenges are also comprised to expose the unscrutinized criteria of Fe2O3 photocatalyst. This review aims to contribute a knowledge transfer for providing more information on the potential of Fe2O3 photocatalyst. In the meantime, it might give an idea for utilization of this photocatalyst in other environmental remediation application.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.