Affiliations 

  • 1 Integrated Neuroscience Program (INP), Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan 16150, Malaysia; Department of Neurosciences, Brain and Behaviour Cluster, Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan 16150, Malaysia
  • 2 Biomedicine Program, School of Health Science, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan 16150, Malaysia
  • 3 Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King AbdulAziz University, Jeddah, Saudi Arabia
  • 4 Integrated Neuroscience Program (INP), Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan 16150, Malaysia; Department of Neurosciences, Brain and Behaviour Cluster, Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan 16150, Malaysia; Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston 77240, TX, USA. Electronic address: sangu@usm.my
Eur Neuropsychopharmacol, 2021 04;45:59-72.
PMID: 32014377 DOI: 10.1016/j.euroneuro.2019.12.121

Abstract

The present study focused on investigating the effect of toll-like receptor 4 (TLR4) antagonist Lipopolysaccharide-Rhodobacter sphaeroides(LPS-RS) on acute, stress-induced voluntary ethanol preference and drinking behaviour, neuronal components activation, and gene expression associated with stress and addictive behaviour. This study involved the exposure of restraint stress and social isolation using Swiss Albino mice. Two-bottle choice ethanol preference analysis was used in the evaluation of voluntary ethanol seeking and drinking behaviour. Several behavioural assessments were carried out to assess fear and anxiety-like behaviour, neuromuscular ability, motor coordination and locomotion. Morphological and immunoreactivity analysis and gene expression analysis were done after the completion of behavioural assessments. TLR4 antagonist LPS-RS treated stressed-mice showed a significant decrease in ethanol drinking compared with stressed mice. Behavioural results showed that stress exposure induced fear and anxiety-like behaviour; however; no significant deficit was found on motor coordination, neuromuscular ability, locomotion and exploratory behaviour among groups. Morphological analysis showed no significant change in the prefrontal cortex and hippocampus among all groups, while immunoreactivity analysis showed higher expression of c-Fos in prefrontal cortex and hippocampus, higher TLR4 expression in the prefrontal cortex and glial fibrillary acidic protein (GFAP) in hippocampus among stressed-animals. Stressed-mice also showed significant increase in TLR4, Nuclear Factor-Kappa B (NF-kB), inducible nitric oxide synthase (iNOS), dopamine receptor D2 (DRD2), cyclic adenosine monophosphate (cAMP) response element binding protein-1 (CREB-1) and opioid receptor MU-1 (OPRM-1) genes expression compared with control and LPS-RS treated stressed-mice. As a conclusion, the antagonism of TLR4 could provide therapeutic value in the treatment of stress-induced addiction.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.