Affiliations 

  • 1 Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia. Electronic address: anishkhan97@gmail.com
  • 2 Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
  • 3 Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia. Electronic address: jawaid_md@yahoo.co.in
  • 4 Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
Carbohydr Polym, 2020 Jul 01;239:116248.
PMID: 32414444 DOI: 10.1016/j.carbpol.2020.116248

Abstract

The aim of the present research work has focused on investigating the effect of cellulose nanofibers (CNFs) and nano clays (montmorillonite (MMT) & organoclay (OMMT)) at 0.75Wt % on the performance of kenaf/epoxy composites. Mechanical (tensile and flexural) and thermal properties of composites in terms of morphology, thermal stability, weight loss, and dynamic mechanical properties were analyzed. The obtained results revealed that the integration of stiff CNFs as filler enhanced the mechanical and thermal properties, storage and loss modulus while a considerable decrease in Tan δ was realized compared to kenaf/epoxy composites. Enhancement in the properties was observed for OMMT and CNFs composites compared to MMT/kenaf/epoxy composites, which is attributed to the uniform filler distribution and interfacial adhesion between CNFs, OMMT, kenaf and epoxy matrix. The obtained results revealed that OMMT and CNFs based kenaf/epoxy composites can be an efficient alternative for construction applications.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.