Affiliations 

  • 1 Geospatial Analysis and Modelling (GAM) Research Laboratory, Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS (UTP), 32610, Seri Iskandar, Perak, Malaysia
  • 2 Geospatial Analysis and Modelling (GAM) Research Laboratory, Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS (UTP), 32610, Seri Iskandar, Perak, Malaysia. Electronic address: Shamsudeenyekeen1@gmail.com
  • 3 Center for Advanced Modeling and Geospatial Information Systems (CAMGIS), Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia; Department of Energy and Mineral Resources Engineering, Sejong University, Choongmu-gwan, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea; Center of Excellence for Climate Change Research, Department of Meteorology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Earth Observation Center, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
  • 4 Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS (UTP), 32610, Seri Iskandar, Perak, Malaysia
Environ Pollut, 2021 Jan 01;268(Pt A):115812.
PMID: 33143984 DOI: 10.1016/j.envpol.2020.115812

Abstract

This study develops an oil spill environmental vulnerability model for predicting and mapping the oil slick trajectory pattern in Kota Tinggi, Malaysia. The impact of seasonal variations on the vulnerability of the coastal resources to oil spill was modelled by estimating the quantity of coastal resources affected across three climatic seasons (northeast monsoon, southwest monsoon and pre-monsoon). Twelve 100 m3 (10,000 splots) medium oil spill scenarios were simulated using General National Oceanic and Atmospheric Administration Operational Oil Modeling Environment (GNOME) model. The output was integrated with coastal resources, comprising biological, socio-economic and physical shoreline features. Results revealed that the speed of an oil slick (40.8 m per minute) is higher during the pre-monsoon period in a southwestern direction and lower during the northeast monsoon (36.9 m per minute). Evaporation, floating and spreading are the major weathering processes identified in this study, with approximately 70% of the slick reaching the shoreline or remaining in the water column during the first 24 h (h) of the spill. Oil spill impacts were most severe during the southwest monsoon, and physical shoreline resources are the most vulnerable to oil spill in the study area. The study concluded that variation in climatic seasons significantly influence the vulnerability of coastal resources to marine oil spill.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.