Affiliations 

  • 1 Geospatial Analysis and Modelling (GAM) Research Laboratory, Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS (UTP), 32610, Seri Iskandar, Perak, Malaysia. tellaabdulwaheed01@gmail.com
  • 2 Geospatial Analysis and Modelling (GAM) Research Laboratory, Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS (UTP), 32610, Seri Iskandar, Perak, Malaysia
Environ Sci Pollut Res Int, 2022 Dec;29(57):86109-86125.
PMID: 34533750 DOI: 10.1007/s11356-021-16150-0

Abstract

Rapid urbanization has caused severe deterioration of air quality globally, leading to increased hospitalization and premature deaths. Therefore, accurate prediction of air quality is crucial for mitigation planning to support urban sustainability and resilience. Although some studies have predicted air pollutants such as particulate matter (PM) using machine learning algorithms (MLAs), there is a paucity of studies on spatial hazard assessment with respect to the air quality index (AQI). Incorporating PM in AQI studies is crucial because of its easily inhalable micro-size which has adverse impacts on ecology, environment, and human health. Accurate and timely prediction of the air quality index can ensure adequate intervention to aid air quality management. Therefore, this study undertakes a spatial hazard assessment of the air quality index using particulate matter with a diameter of 10 μm or lesser (PM10) in Selangor, Malaysia, by developing four machine learning models: eXtreme Gradient Boosting (XGBoost), random forest (RF), K-nearest neighbour (KNN), and Naive Bayes (NB). Spatially processed data such as NDVI, SAVI, BU, LST, Ws, slope, elevation, and road density was used for the modelling. The model was trained with 70% of the dataset, while 30% was used for cross-validation. Results showed that XGBoost has the highest overall accuracy and precision of 0.989 and 0.995, followed by random forest (0.989, 0.993), K-nearest neighbour (0.987, 0.984), and Naive Bayes (0.917, 0.922), respectively. The spatial air quality maps were generated by integrating the geographical information system (GIS) with the four MLAs, which correlated with Malaysia's air pollution index. The maps indicate that air quality in Selangor is satisfactory and posed no threats to health. Nevertheless, the two algorithms with the best performance (XGBoost and RF) indicate that a high percentage of the air quality is moderate. The study concludes that successful air pollution management policies such as green infrastructure practice, improvement of energy efficiency, and restrictions on heavy-duty vehicles can be adopted in Selangor and other Southeast Asian cities to prevent deterioration of air quality in the future.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.