Affiliations 

  • 1 School of Physics, Universiti Sains Malaysia, 11800, Pulau, Pinang, Malaysia; Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau, Pinang, Malaysia. Electronic address: mohammedali1991990@gmail.com
  • 2 School of Physics, Universiti Sains Malaysia, 11800, Pulau, Pinang, Malaysia; Department of Radiology and Molecular Imaging, College of Medicine and Health Science, Sultan Qaboos University. PO. Box: 35, 123, Al Khod, Muscat, Oman
  • 3 School of Physics, Universiti Sains Malaysia, 11800, Pulau, Pinang, Malaysia; Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau, Pinang, Malaysia. Electronic address: lan@usm.my
  • 4 School of Physics, Universiti Sains Malaysia, 11800, Pulau, Pinang, Malaysia; Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau, Pinang, Malaysia
  • 5 New Technologies Research Centre, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
  • 6 Department of Medical Imaging, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
  • 7 School of Physics, Universiti Sains Malaysia, 11800, Pulau, Pinang, Malaysia
Photodiagnosis Photodyn Ther, 2021 Jun;34:102287.
PMID: 33836276 DOI: 10.1016/j.pdpdt.2021.102287

Abstract

The 2019 novel coronavirus (2019-nCoV; severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) has witnessed a rapid and global proliferation since its early identification in patients with severe pneumonia in Wuhan, China. As of 27th May 2020, 2019-nCoV cases have risen to >5 million, with confirmed deaths of 350,000. However, Coronavirus disease (COVID-19) diagnostic and treatment measures are yet to be fully unraveled, given the novelty of this particular coronavirus. Therefore, existing antiviral agents used for severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) were repurposed for COVID-19, taking their biological features into consideration. This study provides a concise review of the current and emerging detection and supervision technologies for SARS-CoV-2, which is the viral etiology of COVID19, and their performance characteristics, with emphasis on the novel Nano-based diagnostic tests (protein corona sensor array and magnetic levitation) and treatment measures (treatment protocols based on nano-silver colloids) for COVID-19.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.