Affiliations 

  • 1 School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
  • 2 Integrative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Pulau Pinang, Malaysia
R Soc Open Sci, 2021 Mar 31;8(3):202061.
PMID: 34035939 DOI: 10.1098/rsos.202061

Abstract

An emulsification liquid-liquid microextraction (ELLME) method was successfully developed using phenolic-based deep eutectic solvent (DES) as an extraction solvent for the determination of phenoxy acid herbicides, 3,6-dichloro-2-methoxybenzoic acid (dicamba) and 2-methyl-4-chlorophenoxyacetic acid (MCPA) in environmental water samples. Five different phenolics-based DESs were successfully synthesized by using phenol (DES 1), 2-chlorophenol (DES 2), 3-chlorophenol (DES 3), 4-chlorophenol (DES 4) and 3,4-dichlorophenol (DES 6) as the hydrogen-bond donor (HBD) and choline chloride as the hydrogen-bond acceptor (HBA). The DESs were mixed at 1 : 2 ratio. A homogeneous solution (clear solution) was observed upon the completion of successful synthesis. The synthesized DESs were characterized by using Fourier transform infrared and nuclear magnetic resonance (NMR). Under optimum ELLME conditions (50 µl of DES 2 as extraction solvent; 100 µl of THF as emulsifier solvent; pH 2; extraction time 5 min), enrichment factor obtained for dicamba and MCPA were 43.1 and 59.7, respectively. The limit of detection and limit of quantification obtained for dicamba were 1.66 and 5.03 µg l-1, respectively, meanwhile for MCPA were 1.69 and 5.12 µg l-1, respectively. The developed ELLME-DES method was applied on paddy field water samples, with extraction recoveries in the range of 79-91% for dicamba and 82-96% for MCPA.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Similar publications