Affiliations 

  • 1 Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
  • 2 Marshall Centre for Infectious Diseases Research and Training, University of Western Australia, Perth, WA 6009, Australia
  • 3 Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
  • 4 School of Science, Tropical Medicine and Biology Platform, Monash University Malaysia, Selangor 47500, Malaysia
Microorganisms, 2021 May 31;9(6).
PMID: 34073047 DOI: 10.3390/microorganisms9061193

Abstract

The ongoing COVID-19 pandemic is a clear and present threat to global public health. Research into how the causative SARS-CoV-2 virus together with its individual constituent genes and proteins interact with target host cells can facilitate the development of improved strategies to manage the acute and long-term complications of COVID-19. In this study, to better understand the biological roles of critical SARS-CoV-2 proteins, we determined and compared the host transcriptomic responses of the HL-CZ human pro-monocytic cell line upon transfection with key viral genes encoding the spike S1 subunit, S2 subunit, nucleocapsid protein (NP), NSP15 (endoribonuclease), and NSP16 (2'-O-ribose-methyltransferase). RNA sequencing followed by gene set enrichment analysis and other bioinformatics tools revealed that host genes associated with topologically incorrect protein, virus receptor activity, heat shock protein binding, endoplasmic reticulum stress, antigen processing and presentation were up-regulated in the presence of viral spike S1 expression. With spike S2 expression, pro-monocytic genes associated with the interferon-gamma-mediated signaling pathway, regulation of phosphatidylinositol 3-kinase activity, adipocytokine signaling pathway, and insulin signaling pathway were down-regulated, whereas those associated with cytokine-mediated signaling were up-regulated. The expression of NSP15 induced the up-regulation of genes associated with neutrophil degranulation, neutrophil-mediated immunity, oxidative phosphorylation, prion disease, and pathways of neurodegeneration. The expression of NSP16 resulted in the down-regulation of genes associated with S-adenosylmethionine-dependent methyltransferase activity. The expression of NP down-regulated genes associated with positive regulation of neurogenesis, nervous system development, and heart development. Taken together, the complex transcriptomic alterations arising from these viral-host gene interactions offer useful insights into host genes and their pathways that potentially contribute to SARS-CoV-2 pathogenesis.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.