Affiliations 

  • 1 International Medical University, 57000 Kuala Lumpur, Malaysia
  • 2 Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
Trop Biomed, 2019 Dec 01;36(4):958-971.
PMID: 33597466

Abstract

Cladosporium spores are ubiquitous in indoor and outdoor environment and may potentially trigger allergic responses upon inhalation. To date, there is limited investigation on the fate of Cladosporium spores after being inhaled into the respiratory tract. This study was conducted to investigate the interaction of Cladosporium sphaerospermum with Human Bronchial Epithelial Cells (BEAS-2B) and Human Pulmonary Alveolar Epithelial Cells (HPAEpiC). C. sphaerospermum conidia were harvested and co-cultured with BEAS-2B or HPAEpiC cells for 72 hours. At each time point (30 minutes, 2, 4, 24, 48 and 72 hours), adherence and invasion of the cells by C. sphaerospermum conidia (and hyphae) were investigated by immunofluorescence staining. This study demonstrated the adherence and internalization of C. sphaerospermum conidia within these epithelial cells. In addition, the conidia were able to germinate and invade the epithelial cells. The ability of the fungal conidia to adhere, internalize, germinate and invade both the bronchial and alveolar epithelial cells of the respiratory tract in vitro might contribute to the understanding of the pathogenesis of Cladosporium in respiratory infection and allergy in vivo.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.