Affiliations 

  • 1 Department of Biology, Pennsylvania State University, University Park, PA 16802, USA. Electronic address: gouldingt@si.edu
  • 2 Department of Marine Science, Universitas Malikussaleh, Reuleut Main Campus, Kecamatan Muara Batu, North Aceh, Aceh 24355, Indonesia
  • 3 Centre for Marine and Coastal Studies, Universiti Sains Malaysia, 11800 Minden Penang, Malaysia; Marine Science Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden Penang, Malaysia
  • 4 Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
Mol Phylogenet Evol, 2022 Mar;168:107360.
PMID: 34793980 DOI: 10.1016/j.ympev.2021.107360

Abstract

Many marine species are specialized to specific parts of a habitat. In a mangrove forest, for instance, species may be restricted to the mud surface, the roots and trunks of mangrove trees, or rotting logs, which can be regarded as distinct microhabitats. Shifts to new microhabitats may be an important driver of sympatric speciation. However, the evolutionary history of these shifts is still poorly understood in most groups of marine organisms, because it requires a well-supported phylogeny with relatively complete taxon sampling. Onchidiid slugs are an ideal case study for the evolutionary history of habitat and microhabitat shifts because onchidiid species are specialized to different tidal zones and microhabitats in mangrove forests and rocky shores, and the taxonomy of the family in the Indo-West Pacific has been recently revised in a series of monographs. Here, DNA sequences for onchidiid species from the North and East Pacific, the Caribbean, and the Atlantic are used to reconstruct phylogenetic relationships among Onchidella species, and are combined with new data for Indo-West Pacific species to reconstruct a global phylogeny of the family. The phylogenetic relationships of onchidiid slugs are reconstructed based on three mitochondrial markers (COI, 12S, 16S) and three nuclear markers (28S, ITS2, H3) and nearly complete taxon sampling (all 13 genera and 62 of the 67 species). The highly-supported phylogeny presented here suggests that ancestral onchidiids most likely lived in the rocky intertidal, and that a lineage restricted to the tropical Indo-West Pacific colonized new habitats, including mudflats, mangrove forests, and high-elevation rainforests. Many onchidiid species in the Indo-West Pacific diverged during the Miocene, around the same time that a high diversity of mangrove plants appears in the fossil record, while divergence among Onchidella species occurred earlier, likely beginning in the Eocene. It is demonstrated that ecological specialization to microhabitats underlies the divergence between onchidiid genera, as well as the diversification through sympatric speciation in the genera Wallaconchis and Platevindex. The geographic distributions of onchidiid species also indicate that allopatric speciation played a key role in the diversification of several genera, especially Onchidella and Peronia. The evolutionary history of several morphological traits (penial gland, rectal gland, dorsal eyes, intestinal loops) is examined in relation to habitat and microhabitat evolutionary transitions and suggests that the rectal gland of onchidiids is an adaptation to high intertidal and terrestrial habitats.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.