Sarcococca saligna methanolic extract, fractions and isolated pure compounds saracocine (1), saracodine (2), pachyximine-A (3) and terminaline (4) were found to possess potent immunosuppressive activities. The fractions and compounds were tested in-vitro for their effects on human T-cell proliferation, and cytokine (IL-2) production. All the fractions, sub-fractions and purified compounds showed significant suppressive effect on IL-2 production in a dose-dependent manner. They also exhibited a suppressive effect on the phytohemagglutinin-stimulated T-cell proliferation. None of the extracts and purified compounds showed any cytotoxicity effects on the 3T3 mice fibroblast cell line. The crude extract, DCM fraction (pH9), DCM fractions (pH7) and one of the steroidal alkaloids (terminaline) were checked in-vivo for their hepato-protective potential against CCl4-induced liver injury. In in-vivo experiments, the basic and neutral DCM fractions and terminaline (4) significantly reduced inflammation in the liver. DCM fraction (pH9), DCM fractions (pH7) and compound 4 reduced the serum enzyme levels (ALT, AST, and ALP) down to control levels despite CCl4 treatment. They also reduced the CCl4-induced damaged area to almost zero as assessed by histopathology. The pale necrotic areas and mixed inflammatory infiltrate which are seen after CCl4 treatment were absent in the cases of basic, neutral fractions and terminaline treatment. These hepato-protective effects were better than the positive control silymarin. Our results suggest the therapeutic effect of S. saligna extract, fractions and bioactive steroidal alkaloids against CCl4-induced liver injury in vivo and their immunosuppressive function in vitro.
The synthetic indole Mannich bases 1-13 have been investigated for their ability to modulate immune responses measured in vitro. These activities were based on monitoring their affects on T-lymphocyte proliferation, reactive oxygen species (ROS), IL (interleukin)-2, IL-4, and nitric oxide production. Compound 5 was found to be the most potent immunomodulator in this context. Four of the synthesized compounds, 5, 11, 12, and 13, have significant potent inhibitory effects on T-cell proliferation, IL-4, and nitric oxide production. However, none of the thirteen indole compounds exerted any activity against ROS production.
Benzothiazole and its natural or synthetic derivatives have been used as precursors for several pharmacological agents for neuroprotective, anti-bacterial, and anti-allergic activities. The objective of the present study was to evaluate effects of benzothiazole analogs (compounds 1-26) for their immunomodulatory activities. Eight compounds (2, 4, 5, 8-10, 12, and 18) showed potent inhibitory activity on PHA-activated peripheral blood mononuclear cells (PBMCs) with IC50 ranging from 3.7 to 11.9 μM compared to that of the standard drug, prednisolone <1.5 μM. Some compounds (2, 4, 8, and 18) were also found to have potent inhibitory activities on the production of IL-2 on PHA/PMA-stimulated PBMCs with IC50 values ranging between <4.0 and 12.8 μM. The binding interaction of these compounds was performed through silico molecular docking. Compounds 2, 8, 9, and 10 significantly suppressed oxidative burst ROS production in phagocytes with IC50 values between <4.0 and 15.2 μM. The lipopolysaccharide (LPS)-induced nitrites in murine macrophages cell line J774 were found to be inhibited by compounds 4, 8, 9, and 18 at a concentration of 25 μg/mL by 56%, 91%, 58%, and 78%, respectively. Furthermore, compounds 5, 8, 12, and 18 showed significant (P<0.05) suppressive activity on Th-2 cytokine, interleukin 4 (IL-4) with an IC50 range of <4.0 to 40.3 μM. Interestingly compound 4 has shown a selective inhibitory activity on IL-2 and T cell proliferation (naïve T cell proliferation stage) rather than on IL-4 cytokine, while compound 12 displayed an interference with T-cell proliferation and IL-4 generation. Moreover compound 8 and 18 exert non-selective inhibition on both IL-2 and IL-4 cytokines, indicating a better interference with stage leading to humoral immune response and hence possible application in autoimmune diseases.
The emergence of multidrug-resistant strains of Mycobacterium tuberculosis underscores the need for continuous development of new and efficient methods to determine the susceptibility of isolates of Mycobacterium tuberculosis in the search for novel antimycobacterial agents. Natural products constitute an important source of new drugs, and design and implementation of antimycobacterial susceptibility testing methods are necessary to evaluate the different extracts and compounds. In this study we have explored the antimycobacterial properties of 50 ethanolic extracts from different parts of 46 selected medicinal plants traditionally used in Sudan to treat infectious diseases.