Displaying all 6 publications

Abstract:
Sort:
  1. Salih, G.A., Ahmad-Raus, R., Shaban, M.N., Abdullah, N.
    MyJurnal
    Breast cancer is considered as one of the most common cancers all over the world. A huge effort has been made to create a safe and cost effective breast cancer treatment. All of these features exist in the plants sources. In this study, the effect of local vegetable salad, Premna serratifolia (Bebuas) against MCF-7 cells (human breast adenocarcinoma) was determined. The optimum condition to extract breast cancer cytotoxic compound from the plant was investigated and the exact cytotoxic compound was identified as well. To determine the plant cytotoxicity effect against MCF-7 cells, MTT assay was used. Two important parameters in the sonication extraction method which are duration of time and temperature were optimized by carrying out a series of experiments which were designed by Face Centered Central Composite Design (FCCCD). The extraction efficiency of each experiment was determined by measuring the yield of extract and the half maximal inhibitory concentration (IC50) of the extract against MCF-7 cells. The results obtained from the experiments were fitted to the second order polynomial model to generate equation that was used to determine best extraction processing condition. Based on the generated equation, the best sonication processing condition to extract the cytotoxic compound is at 30oC for 67 min. Analysis of variance (ANOVA) showed that the duration of extraction time has great influence (p
  2. Ahmad-Raus RR, Abdul-Latif ES, Mohammad JJ
    PMID: 11495637
    A short-term study was carried out using guinea pigs to determine the effects of Curcuma domestica on lipid composition in the serum and aorta.
  3. Ahmad Raus R, Wan Nawawi WMF, Nasaruddin RR
    Asian J Pharm Sci, 2021 May;16(3):280-306.
    PMID: 34276819 DOI: 10.1016/j.ajps.2020.10.001
    Alginate is an edible heteropolysaccharide that abundantly available in the brown seaweed and the capsule of bacteria such as Azotobacter sp. and Pseudomonas sp. Owing to alginate gel forming capability, it is widely used in food, textile and paper industries; and to a lesser extent in biomedical applications as biomaterial to promote wound healing and tissue regeneration. This is evident from the rising use of alginate-based dressing for heavily exuding wound and their mass availability in the market nowadays. However, alginate also has limitation. When in contact with physiological environment, alginate could gelate into softer structure, consequently limits its potential in the soft tissue regeneration and becomes inappropriate for the usage related to load bearing body parts. To cater this problem, wide range of materials have been added to alginate structure, producing sturdy composite materials. For instance, the incorporation of adhesive peptide and natural polymer or synthetic polymer to alginate moieties creates an improved composite material, which not only possesses better mechanical properties compared to native alginate, but also grants additional healing capability and promote better tissue regeneration. In addition, drug release kinetic and cell viability can be further improved when alginate composite is used as encapsulating agent. In this review, preparation of alginate and alginate composite in various forms (fibre, bead, hydrogel, and 3D-printed matrices) used for biomedical application is described first, followed by the discussion of latest trend related to alginate composite utilization in wound dressing, drug delivery, and tissue engineering applications.
  4. Mohmad-Saberi SE, Hashim YZ, Mel M, Amid A, Ahmad-Raus R, Packeer-Mohamed V
    Cytotechnology, 2013 Aug;65(4):577-86.
    PMID: 23179090 DOI: 10.1007/s10616-012-9508-4
    An efficient mammalian cell system for producing bioproducts should retain high cell viability and efficient use of energy sources rendering the need to understand the effects of various variables on the cell system. In this study, global metabolite (metabolomics) analysis approach was used to try and understand the relationships between types of media used, culture growth behavior and productivity. CHO-KI cells producing IGF-1 were obtained from ATCC and grown in T-flask (37 °C, 5 % CO2) until 70-80 % confluent in RPMI 1640 and Ham's F12, respectively. Samples were taken at 8-hourly intervals for routine cell counting, biochemical responses, insulin like growth factor-1 (IGF-1) protein concentration and global metabolite analysis (gas chromatography mass spectrometry, GCMS). Conditioned media from each time point were spun down before injection into GCMS. Data from GCMS were then transferred to SIMCA-P + Version 12 for chemometric evaluation using principal component analysis. The results showed that while routine analysis gave only subtle differences between the media, global metabolite analysis was able to clearly separate the culture based on growth media with growth phases as confounding factor. Different types of media also appeared to affect IGF-1 production. Asparagine was found to be indicative of healthiness of cells and production of high IGF-1. Meanwhile identification of ornithine and lysine in death phase was found to be associated with apoptosis and oversupplied nutrient respectively. Using the biomarkers revealed in the study, several bioprocessing strategies including medium improvement and in-time downstream processing can be potentially implemented to achieve efficient CHO culture system.
  5. Maher T, Ahmad Raus R, Daddiouaissa D, Ahmad F, Adzhar NS, Latif ES, et al.
    Molecules, 2021 May 07;26(9).
    PMID: 34066963 DOI: 10.3390/molecules26092741
    Leukemia is a leukocyte cancer that is characterized by anarchic growth of immature immune cells in the bone marrow, blood and spleen. There are many forms of leukemia, and the best course of therapy and the chance of a patient's survival depend on the type of leukemic disease. Different forms of drugs have been used to treat leukemia. Due to the adverse effects associated with such therapies and drug resistance, the search for safer and more effective drugs remains one of the most challenging areas of research. Thus, new therapeutic approaches are important to improving outcomes. Almost half of the drugs utilized nowadays in treating cancer are from natural products and their derivatives. Medicinal plants have proven to be an effective natural source of anti-leukemic drugs. The cytotoxicity and the mechanisms underlying the toxicity of these plants to leukemic cells and their isolated compounds were investigated. Effort has been made throughout this comprehensive review to highlight the recent developments and milestones achieved in leukemia therapies using plant-derived compounds and the crude extracts from various medicinal plants. Furthermore, the mechanisms of action of these plants are discussed.
  6. Ahmad-Raus R, Ali AM, Tan WS, Salleh HM, Eshaghi M, Yusoff K
    Res Vet Sci, 2009 Feb;86(1):174-82.
    PMID: 18599098 DOI: 10.1016/j.rvsc.2008.05.013
    A panel of six monoclonal antibodies (mAbs) against the nucleocapsid (NP) protein of Newcastle disease virus (NDV) was produced by immunization of Balb/c mice with purified recombinant NP protein. Western Blot analysis showed that all the mAbs recognized linearized NP epitopes. Three different NP antigenic sites were identified using deleted truncated NP mutants purified from Escherichia coli. One of the antigenic sites was located at the C-terminal end (residues 441 to 489) of the NP protein. Two other antigenic sites were located within the N-terminal end (residues 26-121 and 122-375). This study demonstrates that the N- and C-terminal ends of the NP proteins are responsible in eliciting immune response, thus it is most likely that these ends are exposed on the NP.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links