Displaying all 8 publications

Abstract:
Sort:
  1. Al-Hada NM, Saion E, Talib ZA, Shaari AH
    Polymers (Basel), 2016 Apr 08;8(4).
    PMID: 30979222 DOI: 10.3390/polym8040113
    Cadmium oxide semiconductor nanoparticles were produced using a water based mixture, incorporating cadmium nitrates, polyvinyl pyrrolidone (PVP), and calcination temperature. An X-ray diffraction (XRD) evaluation was conducted to determine the degree of crystallization of the semiconductor nanoparticles. In addition, scanning electron microscopy (SEM) was conducted to identify the morphological features of the nanoparticles. The typical particle sizes and particle dispersal were analyzed via the use of transmission electron microscopy (TEM). The findings provided further support for the XRD outcomes. To determine the composition phase, Fourier transform infrared spectroscopy (FT-IR) was conducted, as it indicated the existence of not only metal oxide ionic band in the selection of samples, but also the efficient removal of organic compounds following calcinations. The optical characteristics were demonstrated, so as to analyze the energy band gap via the use of a UV⁻Vis spectrophotometer. A reduced particle size resulted in diminution of the intensity of photoluminescence, was demonstrated by PL spectra. Plus, the magnetic characteristics were examined using an electron spin resonance (ESR) spectroscopy, which affirmed the existence of unpaired electrons.
  2. Abdullahi N, Saion E, Shaari AH, Al-Hada NM, Keiteb A
    PLoS One, 2015;10(5):e0125511.
    PMID: 25993127 DOI: 10.1371/journal.pone.0125511
    MWCNTs/TiO2 nanocomposite was prepared by oxidising MWCNT in H2SO4/HNO3 then decorating it with TiO2-p25 nanopowder. The composites were characterised using XRD, TEM, FT-IR PL and UV-vis spectroscopy. The TEM images have shown TiO2 nanoparticles immobilised onto the sidewalls of the MWCNTs. The UV-vis spectrum confirms that the nanocomposites can significantly absorb more light in the visible regions compared with the commercial TiO2 (P25). The catalytic activity of these nanocomposites was determined by photooxidation of MB aqueous solution in the presence of visible light. The MWCNTs/TiO2 (1:3) mass ratio showed maximum degradation efficiency. However, its activity was more favourable in alkaline and a neutral pH than an acidic medium.
  3. Al-Hada NM, Kamari HM, Baqer AA, Shaari AH, Saion E
    Nanomaterials (Basel), 2018 Apr 17;8(4).
    PMID: 29673195 DOI: 10.3390/nano8040250
    SnO₂ nanoparticle production using thermal treatment with tin(II) chloride dihydrate and polyvinylpyrrolidone capping agent precursor materials for calcination was investigated. Samples were analyzed using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), diffuse UV-vis reflectance spectra, photoluminescence (PL) spectra and the electron spin resonance (ESR). XRD analysis found tetragonal crystalline structures in the SnO₂ nanoparticles generated through calcination. EDX and FT-IR spectroscopy phase analysis verified the derivation of the Sn and O in the SnO₂ nanoparticle samples from the precursor materials. An average nanoparticle size of 4–15.5 nm was achieved by increasing calcination temperature from 500 °C to 800 °C, as confirmed through TEM. The valence state and surface composition of the resulting nanoparticle were analyzed using XPS. Diffuse UV-vis reflectance spectra were used to evaluate the optical energy gap using the Kubelka-Munk equation. Greater calcination temperature resulted in the energy band gap falling from 3.90 eV to 3.64 eV. PL spectra indicated a positive relationship between particle size and photoluminescence. Magnetic features were investigated through ESR, which revealed the presence of unpaired electrons. The magnetic field resonance decreases along with an increase of the g-factor value as the calcination temperature increased from 500 °C to 800 °C. Finally, Escherichia coli ATCC 25922 Gram (–ve) and Bacillus subtilis UPMC 1175 Gram (+ve) were used for in vitro evaluation of the tin oxide nanoparticle’s antibacterial activity. This work indicated that the zone of inhibition of 22 mm has good antibacterial activity toward the Gram-positive B. subtilis UPMC 1175.
  4. Yang J, Xu S, Wang W, Ran X, Ching YC, Sui X, et al.
    Carbohydr Polym, 2023 Jan 15;300:120253.
    PMID: 36372510 DOI: 10.1016/j.carbpol.2022.120253
    In this work, a systematic coupling study of silane coupling agent between starch and epoxidized soybean oils (ESO) was carried out. Starch was modified by 3-aminopropyl trimethoxy silane (APMS) with various contents of NaOH. The APMS-modified starch was incorporated with ESO to synthesize the bioplastics by solution casting. As demonstrated by the FTIR spectra, the hydrogen bond interactions among starch molecules were inhibited by the modification. This outcome provided higher interaction and compatibility of starch with ESO, as confirmed by FESEM. TGA showed that the thermal stability of starch decreased considerably after the silylation. In contrast, the produced bioplastics with silylated starch exhibited higher thermal stability than the control sample. Regarding the bioplastics, an obvious increase of tensile strength from 5.78 MPa to 9.29 MPa was obtained. This work suggested a simple and effective modification technique by APMS to improve compatibility of starch/ESO-based bioplastics with superior mechanical and thermal properties.
  5. Yang J, Xu S, Chee CY, Ching KY, Wei Y, Wang R, et al.
    Int J Biol Macromol, 2024 Feb;258(Pt 2):129037.
    PMID: 38158061 DOI: 10.1016/j.ijbiomac.2023.129037
    The present work systematically investigated the influence of starch silylation on the structures and properties of starch/epoxidized soybean oil-based bioplastics. Silylated starch was synthesized using starch particles (SP-ST) or gelatinized starch (SG-ST) under different silane hydrolysis pHs. Due to the appearance of -NH2 groups and lower OH wavenumbers, SP-ST obtained at pH 5 showed higher silylation degree and stronger hydrogen bond interaction with epoxidized soybean oils (ESO) than that at pH 11. The morphology analysis revealed better interfacial compatibility of ESO and SP-ST. The tensile strength of the samples containing SP-ST increased by 51.91 % than the control, emphasizing the enhanced interaction within the bioplastics. However, tensile strength of the bioplastics with SG-ST decreased by 59.56 % due to their high moisture contents from unreacted silanes. Additionally, the bioplastics with SG-ST exhibited an obvious reduction of thermal stability and an increase in water solubility because of the presence of unreacted APMS. The bioplastic degradation was not prevented by starch silylation except high pH. The bioplastics showed the most desirable tensile properties, thermal stability, and water solubility when starch was surface-modified with silanes hydrolyzed at pH 5. These outcomes made the fabricated bioplastics strong candidates for petroleum-based plastics for packaging applications.
  6. Al-Hada NM, Mohamed Kamari H, Abdullah CAC, Saion E, Shaari AH, Talib ZA, et al.
    Int J Nanomedicine, 2017;12:8309-8323.
    PMID: 29200844 DOI: 10.2147/IJN.S150405
    In the present study, binary oxide (cadmium oxide [CdO])x (zinc oxide [ZnO])1-x nanoparticles (NPs) at different concentrations of precursor in calcination temperature were prepared using thermal treatment technique. Cadmium and zinc nitrates (source of cadmium and zinc) with polyvinylpyrrolidone (capping agent) have been used to prepare (CdO)x (ZnO)1-x NPs samples. The sample was characterized by X-ray diffraction (XRD), scanning electron microscopy, energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. XRD patterns analysis revealed that NPs were formed after calcination, which showed a cubic and hexagonal crystalline structure of (CdO)x (ZnO)1-x NPs. The phase analysis using EDX spectroscopy and FTIR spectroscopy confirmed the presence of Cd and Zn as the original compounds of prepared (CdO)x (ZnO)1-x NP samples. The average particle size of the samples increased from 14 to 33 nm as the concentration of precursor increased from x=0.20 to x=0.80, as observed by TEM results. The surface composition and valance state of the prepared product NPs were determined by X-ray photoelectron spectroscopy (XPS) analyses. Diffuse UV-visible reflectance spectra were used to determine the optical band gap through the Kubelka-Munk equation; the energy band gap was found to decrease for CdO from 2.92 to 2.82 eV and for ZnO from 3.22 to 3.11 eV with increasing x value. Additionally, photoluminescence (PL) spectra revealed that the intensity in PL increased with an increase in particle size. In addition, the antibacterial activity of binary oxide NP was carried out in vitro against Escherichia coli ATCC 25922 Gram (-ve), Salmonella choleraesuis ATCC 10708, and Bacillus subtilis UPMC 1175 Gram (+ve). This study indicated that the zone of inhibition of 21 mm has good antibacterial activity toward the Gram-positive B. subtilis UPMC 1175.
  7. Al-Hada NM, Saion EB, Shaari AH, Kamarudin MA, Flaifel MH, Ahmad SH, et al.
    PLoS One, 2014;9(8):e103134.
    PMID: 25093752 DOI: 10.1371/journal.pone.0103134
    A facile thermal-treatment route was successfully used to synthesize ZnO nanosheets. Morphological, structural, and optical properties of obtained nanoparticles at different calcination temperatures were studied using various techniques. The FTIR, XRD, EDX, SEM and TEM images confirmed the formation of ZnO nanosheets through calcination in the temperature between 500 to 650 °C. The SEM images showed a morphological structure of ZnO nanosheets, which inclined to crumble at higher calcination temperatures. The XRD and FTIR spectra revealed that the samples were amorphous at 30 °C but transformed into a crystalline structure during calcination process. The average particle size and degree of crystallinity increased with increasing calcination temperature. The estimated average particle sizes from TEM images were about 23 and 38 nm for the lowest and highest calcination temperature i.e. 500 and 650 °C, respectively. The optical properties were determined by UV-Vis reflection spectrophotometer and showed a decrease in the band gap with increasing calcination temperature.
  8. Al-Hada NM, Md Kasmani R, Kasim H, Al-Ghaili AM, Saleh MA, Banoqitah EM, et al.
    Nanomaterials (Basel), 2021 Aug 22;11(8).
    PMID: 34443973 DOI: 10.3390/nano11082143
    In the present work, a thermal treatment technique is applied for the synthesis of CexSn1-xO2 nanoparticles. Using this method has developed understanding of how lower and higher precursor values affect the morphology, structure, and optical properties of CexSn1-xO2 nanoparticles. CexSn1-xO2 nanoparticle synthesis involves a reaction between cerium and tin sources, namely, cerium nitrate hexahydrate and tin (II) chloride dihydrate, respectively, and the capping agent, polyvinylpyrrolidone (PVP). The findings indicate that lower x values yield smaller particle size with a higher energy band gap, while higher x values yield a larger particle size with a smaller energy band gap. Thus, products with lower x values may be suitable for antibacterial activity applications as smaller particles can diffuse through the cell wall faster, while products with higher x values may be suitable for solar cell energy applications as more electrons can be generated at larger particle sizes. The synthesized samples were profiled via a number of methods, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). As revealed by the XRD pattern analysis, the CexSn1-xO2 nanoparticles formed after calcination reflect the cubic fluorite structure and cassiterite-type tetragonal structure of CexSn1-xO2 nanoparticles. Meanwhile, using FT-IR analysis, Ce-O and Sn-O were confirmed as the primary bonds of ready CexSn1-xO2 nanoparticle samples, whilst TEM analysis highlighted that the average particle size was in the range 6-21 nm as the precursor concentration (Ce(NO3)3·6H2O) increased from 0.00 to 1.00. Moreover, the diffuse UV-visible reflectance spectra used to determine the optical band gap based on the Kubelka-Munk equation showed that an increase in x value has caused a decrease in the energy band gap and vice versa.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links