MATERIALS AND METHODS: Twenty-four rats were divided into three groups: normal saline, octenidine dihydrochloride and povidone-iodine. Wounds were made on the rats' backs, and A. baumannii germs were inoculated into the wounds. After 3 hours, the wound was irrigated with wound cleansing solution according to the group for 30 seconds. Each wound was taken swab culture before and after wound irrigation and tissue culture 5 hours after wound irrigation.
RESULTS: All specimens showed bacterial colony growth with a median value of 1.22 × 105 CFU before irrigation. Wound irrigation with normal saline did not reduce colony counts, while there was a 3-log reduction to 5-log reduction in the octenidine and povidone-iodine groups. Statistically, there was no significant difference in the mean number of colonies between the octenidine and povidone-iodine groups after irrigation (p = 0.535). However, 3 hours after irrigation, all specimens that experienced 3-log reduction showed regrowth to more than 1 × 105 CFU. In contrast, specimens subjected to 5-log reduction did not exhibit any regrowth.
CONCLUSION: The antiseptic effectiveness of octenidine dihydrochloride is equivalent to povidone-iodine in eradicating A. baumannii colonies in wounds in vivo.
METHODS: Solid dispersions were prepared using hydrophilic carriers like polyethylene glycol (PEG) 4000, polyvinylpyrrolidone (PVP) k30 and carbopol 974pNF (CP) in various ratios using solvent evaporation technique. These formulations were evaluated using solubility studies, dissolution studies; Fourier transmitted infrared spectroscopy (FTIR), X-ray diffraction (XRD), and differential scanning calorimetery (DSC). The influence of polymer type and drug to polymer ratio on the solubility and dissolution rate of norfloxacin was also evaluated.
RESULTS: FTIR analysis showed no interaction of all three polymers with norfloxacin. The results from XRD and DSC analyses of the solid dispersion preparations showed that norfloxacin existsin its amorphous form. Among the Norfloxacin: PEG solid dispersions, Norfloxacin: PEG 1:14 ratio showed the highest dissolution rate at pH 6.8. For norfloxacin: PVP solid dispersions, norfloxacin: PVP 1:10 ratio showed the highest dissolution rate at pH 6.8. For Norfloxacin: CP solid dispersions, norfloxacin: P 1:2 ratio showed the highest dissolution rate at pH 6.8.
CONCLUSION: The solid dispersion of norfloxacin with polyethylene glycol (PEG) 4000, polyvinylpyrrolidone (PVP) k30 and carbopol 974p NF (CP), lends an ample credence for better therapeutic efficacy.
AIM: To investigate the effect of four commonly used wound care regimens on the tensile strength of suture materials.
METHODS: The failure load of 9 different suture materials was tested using the Instron Electroplus E3000 tensile testing machine (Instron Corporation, Norwood, Massachusetts). Tensile strength was represented as the failure load, measured in Newtons (N), and defined as the maximal load that could be applied across the suture prior to failure. Each suture was tested dry and after immersion in one of 4 products for 7 days and tested on day 7. The immersion agents tested were: sodium chloride 0.9%, MicroSafe® (Sonoma Pharmaceuticals, Petaluma, CA), Aqueous Povidone-iodine 10% solution (Betadine-Mundipharma), and Fucidin ointment.
RESULTS: Sodium chloride 0.9%, MicroSafe®, Aqueous Povidone-iodine 10%, and Fucidin seem to increase the failure load of most absorbable and non-absorbable sutures. However, the failure load of Polyglactin 910 suture (Surgilactin, coated, violet-Ethicon) is reduced by long-term exposure to either sodium chloride 0.9% or MicroSafe®, while the failure load of the Polydioxanone suture (PDS Plus-Ethicon) is reduced by long-term exposure to MicroSafe® only.
CONCLUSION: In our experiment, the commonly used wound care products have been shown to alter the tensile strength of suture materials. Further human studies are required to ascertain the clinical validity and applicability of our findings.
METHODS: An online survey-based study of leading eye institutions in China, Hong Kong, India, Indonesia, Japan, Malaysia, Pakistan, Philippines, Singapore, South Korea, Taiwan, Thailand and Vietnam was conducted. The survey was administered to 26 representative key opinion leaders from prominent tertiary eye institutions that are also national academic teaching institutions in Asia. Survey responses were collated and anonymized during analysis.
RESULTS: All surveyed institutions used povidone iodine for the preoperative antiseptic preparation of the eye, with notable variations in the concentration of povidone iodine used for conjunctival sac instillation. Preoperative topical antibiotics were prescribed by 61.5% and 69.2% of institutions in low-risk and high-risk cases, respectively. Regarding the use of intra-operative antibiotics, 60.0% and 66.7% of institutions administered intracameral antibiotics in low-risk and high-risk patients, respectively. Postoperative topical antibiotics use patterns were generally very similar in low-risk and high-risk patients. Over half of the institutions (52.2% and 68.0% in low-risk and high-risk patients, respectively) also indicated prolonged postoperative use of topical antibiotics (> 2 weeks). Not all surveyed institutions had established policies/protocols for perioperative antibiotic use in cataract surgery, endophthalmitis surveillance, and/or a monitoring program for emerging antimicrobial resistance.
CONCLUSION: There are variations in antimicrobial prophylaxis approaches to preoperative, intra-operative and postoperative regimens in cataract surgery in Asia. More evidence-based research is needed to support the development of detailed guidelines for perioperative antibiotic prophylaxis to reduce postoperative infections.