Displaying all 7 publications

Abstract:
Sort:
  1. Al-Saffar A, Awang S, Tao H, Omar N, Al-Saiagh W, Al-Bared M
    PLoS One, 2018;13(4):e0194852.
    PMID: 29684036 DOI: 10.1371/journal.pone.0194852
    Sentiment analysis techniques are increasingly exploited to categorize the opinion text to one or more predefined sentiment classes for the creation and automated maintenance of review-aggregation websites. In this paper, a Malay sentiment analysis classification model is proposed to improve classification performances based on the semantic orientation and machine learning approaches. First, a total of 2,478 Malay sentiment-lexicon phrases and words are assigned with a synonym and stored with the help of more than one Malay native speaker, and the polarity is manually allotted with a score. In addition, the supervised machine learning approaches and lexicon knowledge method are combined for Malay sentiment classification with evaluating thirteen features. Finally, three individual classifiers and a combined classifier are used to evaluate the classification accuracy. In experimental results, a wide-range of comparative experiments is conducted on a Malay Reviews Corpus (MRC), and it demonstrates that the feature extraction improves the performance of Malay sentiment analysis based on the combined classification. However, the results depend on three factors, the features, the number of features and the classification approach.
  2. Al-Saiagh W, Tiun S, Al-Saffar A, Awang S, Al-Khaleefa AS
    PLoS One, 2018;13(12):e0208695.
    PMID: 30571777 DOI: 10.1371/journal.pone.0208695
    Word sense disambiguation (WSD) is the process of identifying an appropriate sense for an ambiguous word. With the complexity of human languages in which a single word could yield different meanings, WSD has been utilized by several domains of interests such as search engines and machine translations. The literature shows a vast number of techniques used for the process of WSD. Recently, researchers have focused on the use of meta-heuristic approaches to identify the best solutions that reflect the best sense. However, the application of meta-heuristic approaches remains limited and thus requires the efficient exploration and exploitation of the problem space. Hence, the current study aims to propose a hybrid meta-heuristic method that consists of particle swarm optimization (PSO) and simulated annealing to find the global best meaning of a given text. Different semantic measures have been utilized in this model as objective functions for the proposed hybrid PSO. These measures consist of JCN and extended Lesk methods, which are combined effectively in this work. The proposed method is tested using a three-benchmark dataset (SemCor 3.0, SensEval-2, and SensEval-3). Results show that the proposed method has superior performance in comparison with state-of-the-art approaches.
  3. Zhang G, Jing W, Tao H, Rahman MA, Salih SQ, Al-Saffar A, et al.
    Work, 2021;68(3):935-943.
    PMID: 33612535 DOI: 10.3233/WOR-203427
    BACKGROUND: Human-Robot Interaction (HRI) has become a prominent solution to improve the robustness of real-time service provisioning through assisted functions for day-to-day activities. The application of the robotic system in security services helps to improve the precision of event detection and environmental monitoring with ease.

    OBJECTIVES: This paper discusses activity detection and analysis (ADA) using security robots in workplaces. The application scenario of this method relies on processing image and sensor data for event and activity detection. The events that are detected are classified for its abnormality based on the analysis performed using the sensor and image data operated using a convolution neural network. This method aims to improve the accuracy of detection by mitigating the deviations that are classified in different levels of the convolution process.

    RESULTS: The differences are identified based on independent data correlation and information processing. The performance of the proposed method is verified for the three human activities, such as standing, walking, and running, as detected using the images and sensor dataset.

    CONCLUSION: The results are compared with the existing method for metrics accuracy, classification time, and recall.

  4. Guangnan Z, Tao H, Rahman MA, Yao L, Al-Saffar A, Meng Q, et al.
    Work, 2021;68(3):871-879.
    PMID: 33612530 DOI: 10.3233/WOR-203421
    BACKGROUND: An isolated robot must take account of uncertainty in its world model and adapt its activities to take into account such as uncertainty. In the same way, a robot interaction with security and privacy issues (RISAPI) with people has to account for its confusion about the human internal state, as well as how this state will shift as humans respond to the robot.

    OBJECTIVES: This paper discusses RISAPI of our original work in the field, which shows how probabilistic planning and system theory algorithms in workplace robotic systems that work with people can allow for that reasoning using a security robot system. The problem is a general way as an incomplete knowledge 2-player game.

    RESULTS: In this general framework, the various hypotheses and these contribute to thrilling and complex robot behavior through real-time interaction, which transforms actual human subjects into a spectrum of production systems, robots, and care facilities.

    CONCLUSION: The models of the internal human situation, in which robots can be designed efficiently, are limited, and achieve optimal computational intractability in large, high-dimensional spaces. To achieve this, versatile, lightweight portrayals of the human inner state and modern algorithms offer great hope for reasoning.

  5. Tao H, Rahman MA, Jing W, Li Y, Li J, Al-Saffar A, et al.
    Work, 2021;68(3):903-912.
    PMID: 33720867 DOI: 10.3233/WOR-203424
    BACKGROUND: Human-robot interaction (HRI) is becoming a current research field for providing granular real-time applications and services through physical observation. Robotic systems are designed to handle the roles of humans and assist them through intrinsic sensing and commutative interactions. These systems handle inputs from multiple sources, process them, and deliver reliable responses to the users without delay. Input analysis and processing is the prime concern for the robotic systems to understand and resolve the queries of the users.

    OBJECTIVES: In this manuscript, the Interaction Modeling and Classification Scheme (IMCS) is introduced to improve the accuracy of HRI. This scheme consists of two phases, namely error classification and input mapping. In the error classification process, the input is analyzed for its events and conditional discrepancies to assign appropriate responses in the input mapping phase. The joint process is aided by a linear learning model to analyze the different conditions in the event and input detection.

    RESULTS: The performance of the proposed scheme shows that it is capable of improving the interaction accuracy by reducing the ratio of errors and interaction response by leveraging the information extraction from the discrete and successive human inputs.

    CONCLUSION: The fetched data are analyzed by classifying the errors at the initial stage to achieve reliable responses.

  6. Al-Saffar A, Awang S, Al-Saiagh W, Al-Khaleefa AS, Abed SA
    Sensors (Basel), 2021 Nov 02;21(21).
    PMID: 34770612 DOI: 10.3390/s21217306
    Handwriting recognition refers to recognizing a handwritten input that includes character(s) or digit(s) based on an image. Because most applications of handwriting recognition in real life contain sequential text in various languages, there is a need to develop a dynamic handwriting recognition system. Inspired by the neuroevolutionary technique, this paper proposes a Dynamically Configurable Convolutional Recurrent Neural Network (DC-CRNN) for the handwriting recognition sequence modeling task. The proposed DC-CRNN is based on the Salp Swarm Optimization Algorithm (SSA), which generates the optimal structure and hyperparameters for Convolutional Recurrent Neural Networks (CRNNs). In addition, we investigate two types of encoding techniques used to translate the output of optimization to a CRNN recognizer. Finally, we proposed a novel hybridized SSA with Late Acceptance Hill-Climbing (LAHC) to improve the exploitation process. We conducted our experiments on two well-known datasets, IAM and IFN/ENIT, which include both the Arabic and English languages. The experimental results have shown that LAHC significantly improves the SSA search process. Therefore, the proposed DC-CRNN outperforms the handcrafted CRNN methods.
  7. Tao H, Rahman MA, Al-Saffar A, Zhang R, Salih SQ, Zain JM, et al.
    Work, 2021;68(3):853-861.
    PMID: 33612528 DOI: 10.3233/WOR-203419
    BACKGROUND: Nowadays, workplace violence is found to be a mental health hazard and considered a crucial topic. The collaboration between robots and humans is increasing with the growth of Industry 4.0. Therefore, the first problem that must be solved is human-machine security. Ensuring the safety of human beings is one of the main aspects of human-robotic interaction. This is not just about preventing collisions within a shared space among human beings and robots; it includes all possible means of harm for an individual, from physical contact to unpleasant or dangerous psychological effects.

    OBJECTIVE: In this paper, Non-linear Adaptive Heuristic Mathematical Model (NAHMM) has been proposed for the prevention of workplace violence using security Human-Robot Collaboration (HRC). Human-Robot Collaboration (HRC) is an area of research with a wide range of up-demands, future scenarios, and potential economic influence. HRC is an interdisciplinary field of research that encompasses cognitive sciences, classical robotics, and psychology.

    RESULTS: The robot can thus make the optimal decision between actions that expose its capabilities to the human being and take the best steps given the knowledge that is currently available to the human being. Further, the ideal policy can be measured carefully under certain observability assumptions.

    CONCLUSION: The system is shown on a collaborative robot and is compared to a state of the art security system. The device is experimentally demonstrated. The new system is being evaluated qualitatively and quantitatively.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links