Cancer involves cells' abnormal growth and ability to invade or metastasize to different body parts. Cancerous cells can divide uncontrollably and spread to other areas through the lymphatic or circulatory systems. Tumors form when malignant cells clump together in an uncontrolled manner. In this context, the cytokine interferon-gamma (IFN-γ) is crucial in regulating immunological responses, particularly malignancy. While IFN-γ is well-known for its potent anti-tumor effects by activating type 1 immunity, recent research has revealed its ability to suppress type 2 immunity, associated with allergy and inflammatory responses. This review aims to elucidate the intricate function of IFN-γ in inhibiting type 2 immune responses to cancer. We explore how IFN-γ influences the development and function of immune cells involved in type 2 immunity, such as mast cells, eosinophils, and T-helper 2 (Th2) cells. Additionally, we investigate the impact of IFN-mediated reduction of type 2 immunity on tumor development, metastasis, and the response to immunotherapeutic interventions. To develop successful cancer immunotherapies, it is crucial to comprehend the complex interplay between type 2 and type 1 immune response and the regulatory role of IFN-γ. This understanding holds tremendous promise for the development of innovative treatment approaches that harness the abilities of both immune response types to combat cancer. However, unraveling the intricate interplay between IFN-γ and type 2 immunity in the tumor microenvironment will be essential for achieving this goal.
Breast cancer is a complex and diverse condition that disrupts multiple signaling pathways essential for cell proliferation, survival, and differentiation. Recently, the significant involvement of long-chain non-coding RNAs (lncRNAs) in controlling key signaling pathways associated with breast cancer development has been discovered. This review aims to explore the interaction between lncRNAs and various pathways, including the AKT/PI3K/mTOR, Wnt/β-catenin, Notch, DNA damage response, TGF-β, Hedgehog, and NF-κB signaling pathways, to gain a comprehensive understanding of their roles in breast cancer. The AKT/PI3K/mTOR pathway regulates cell growth, survival, and metabolic function. Recent data suggests that specific lncRNAs can influence the functioning of this pathway, acting as either oncogenes or tumor suppressors. Dysregulation of this pathway is commonly observed in breast cancer cases. Moreover, breast cancer development has been associated with other pathways such as Wnt/β-catenin, Notch, TGF-β, Hedgehog, and NF-κB. Emerging studies have identified lncRNAs that modulate breast cancer's growth, progression, and metastasis by interacting with these pathways. To advance the development of innovative diagnostic tools and targeted treatment options, it is crucial to comprehend the intricate relationship between lncRNAs and vital signaling pathways in breast cancer. By fully harnessing the therapeutic potential of lncRNAs, there is a possibility of developing more effective and personalized therapy choices for breast cancer patients. Further investigation is necessary to comprehensively understand the role of lncRNAs within breast cancer signaling pathways and fully exploit their therapeutic potential.
Lung cancer remains a formidable global health burden, necessitating a comprehensive understanding of the underlying molecular mechanisms driving its progression. Recently, lncRNAs have become necessary controllers of various biological functions, including cancer development. MALAT1 has garnered significant attention due to its multifaceted role in lung cancer progression. Lung cancer, among other malignancies, upregulates MALAT1. Its overexpression has been associated with aggressive tumor behavior and poor patient prognosis. MALAT1 promotes cellular proliferation, epithelial-mesenchymal transition (EMT), and angiogenesis in lung cancer, collectively facilitating tumor growth and metastasis. Additionally, MALAT1 enhances cancer cell invasion by interacting with numerous signaling pathways. Furthermore, MALAT1 has been implicated in mediating drug resistance in lung cancer, contributing to the limited efficacy of conventional therapies. Recent advancements in molecular biology and high-throughput sequencing technologies have offered fresh perspectives into the regulatory networks of MALAT1 in lung cancer. It exerts its oncogenic effects by acting as a ceRNA to sponge microRNAs, thereby relieving their inhibitory effects on target genes. Moreover, MALAT1 also influences chromatin remodeling and post-translational modifications to modulate gene expression, further expanding its regulatory capabilities. This review sheds light on the multifaceted roles of MALAT1 in lung cancer progression, underscoring its potential as an innovative therapeutic target and diagnostic biomarker. Targeting MALAT1 alone or combined with existing therapies holds promise to mitigate lung cancer progression and improve patient outcomes.
The intricate molecular landscape of cancer pathogenesis continues to captivate researchers worldwide, with Circular RNAs (circRNAs) emerging as pivotal players in the dynamic regulation of biological functions. The study investigates the elusive link between circRNAs and the Transforming Growth Factor-β (TGF-β) signalling pathway, exploring their collective influence on cancer progression and metastasis. Our comprehensive investigation begins by profiling circRNA expression patterns in diverse cancer types, revealing a repertoire of circRNAs intricately linked to the TGF-β pathway. Through integrated bioinformatics analyses and functional experiments, we elucidate the specific circRNA-mRNA interactions that modulate TGF-β signalling, unveiling the regulatory controls governing this crucial pathway. Furthermore, we provide compelling evidence of the impact of circRNA-mediated TGF-β modulation on key cellular processes, including epithelial-mesenchymal transition (EMT), migration, and cell proliferation. In addition to their mechanistic roles, circRNAs have shown promise as diagnostic and prognostic biomarkers, as well as potential molecular targets for cancer therapy. Their ability to modulate critical pathways, such as the TGF-β signalling axis, underscores their significance in cancer biology and clinical applications. The intricate interplay between circRNAs and TGF-β is dissected, uncovering novel regulatory circuits that contribute to the complexity of cancer biology. This review unravels a previously unexplored dimension of carcinogenesis, emphasizing the crucial role of circRNAs in shaping the TGF-β signalling landscape.
Circular RNAs (circRNAs) have emerged as pivotal regulators of gene expression and cellular processes in various physiological and pathological conditions. In recent years, there has been a growing interest in investigating the role of circRNAs in inflammatory lung diseases, owing to their potential to modulate inflammation-associated pathways and contribute to disease pathogenesis. Inflammatory lung diseases, like asthma, chronic obstructive pulmonary disease (COPD), and COVID-19, pose significant global health challenges. The dysregulation of inflammatory responses demonstrates a pivotal function in advancing these diseases. CircRNAs have been identified as important players in regulating inflammation by functioning as miRNA sponges, engaging with RNA-binding proteins, and participating in intricate ceRNA networks. These interactions enable circRNAs to regulate the manifestation of key inflammatory genes and signaling pathways. Furthermore, emerging evidence suggests that specific circRNAs are differentially expressed in response to inflammatory stimuli and exhibit distinct patterns in various lung diseases. Their involvement in immune cell activation, cytokine production, and tissue remodeling processes underscores their possible capabilities as therapeutic targets and diagnostic biomarkers. Harnessing the knowledge of circRNA-mediated regulation in inflammatory lung diseases could lead to the development of innovative strategies for disease management and intervention. This review summarizes the current understanding of the role of circRNAs in inflammatory lung diseases, focusing on their regulatory mechanisms and functional implications.
Cancer is a group of diseases marked by unchecked cell proliferation and the ability for the disease to metastasize to different body areas. Enhancements in treatment and early detection are crucial for improved outcomes. LncRNAs are RNA molecules that encode proteins and have a length of more than 200 nucleotides. LncRNAs are crucial for chromatin architecture, gene regulation, and other cellular activities that impact both normal growth & pathological processes, even though they are unable to code for proteins. LncRNAs have emerged as significant regulators in the study of cancer biology, with a focus on their intricate function in the Notch signaling pathway. The imbalance of this pathway is often linked to a variety of malignancies. Notch signaling is essential for cellular functions like proliferation, differentiation, and death. The cellular response is shaped by these lncRNAs through their modulation of essential Notch pathway constituents such as receptors, ligands, and downstream effectors around it. Furthermore, a variety of cancer types exhibit irregular expression of Notch-related lncRNAs, underscoring their potential use as therapeutic targets and diagnostic markers. Gaining an understanding of the molecular processes behind the interaction between the Notch pathway and lncRNAs will help you better understand the intricate regulatory networks that control the development of cancer. This can open up new possibilities for individualized treatment plans and focused therapeutic interventions. The intricate relationships between lncRNAs & the Notch pathway in cancer are examined in this review.
One of the main causes of death worldwide is lung cancer, which is largely caused by cigarette smoking. The crucial transcription factor NF-κB, which controls inflammatory responses and various cellular processes, is a constitutively present cytoplasmic protein strictly regulated by inhibitors like IκB proteins. Upon activation by external stimuli, it undergoes phosphorylation, translocates into the nucleus, and modulates the expression of specific genes. The incontrovertible association between pulmonary malignancy and tobacco consumption underscores and highlights a public health concern. Polycyclic aromatic hydrocarbons and nitrosamines, potent carcinogenic compounds present in the aerosol emitted from combusted tobacco, elicit profound deleterious effects upon inhalation, resulting in severe perturbation of pulmonary tissue integrity. The pathogenesis of smoking-induced lung cancer encompasses an intricate process wherein NF-κB activation plays a pivotal role, triggered by exposure to cigarette smoke through diverse signaling pathways, including those associated with oxidative stress and pro-inflammatory cytokines. Unraveling the participation of NF-κB in smoking-induced lung cancer provides pivotal insights into molecular processes, wherein intricate crosstalk between NF-κB and pathways such as MAPK and PI3K-Akt amplifies the inflammatory response, fostering an environment conducive to the formation of lung cancer. This study reviews the critical function of NF-κB in the complex molecular pathways linked to the initiation and advancement of lung carcinogenesis as well as potential treatment targets. See also the graphical abstract(Fig. 1).
A primary illness that accounts for a significant portion of fatalities worldwide is cancer. Among the main malignancies, lung cancer is recognised as the most chronic kind of cancer around the globe. Radiation treatment, surgery, and chemotherapy are some medical procedures used in the traditional care of lung cancer. However, these methods lack selectivity and damage nearby healthy cells. Several polysaccharide-based nanomaterials have been created to transport chemotherapeutics to reduce harmful and adverse side effects and improve response during anti-tumour reactions. To address these drawbacks, a class of naturally occurring polymers called polysaccharides have special physical, chemical, and biological characteristics. They can interact with the immune system to induce a better immunological response. Furthermore, because of the flexibility of their structures, it is possible to create multifunctional nanocomposites with excellent stability and bioavailability for the delivery of medicines to tumour tissues. This study seeks to present new views on the use of polysaccharide-based chemotherapeutics and to highlight current developments in polysaccharide-based nanomedicines for lung cancer.
Lung inflammatory disorders are a major global health burden, impacting millions of people and raising rates of morbidity and death across many demographic groups. An industrial chemical and common environmental contaminant, formaldehyde (FA) presents serious health concerns to the respiratory system, including the onset and aggravation of lung inflammatory disorders. Epidemiological studies have shown significant associations between FA exposure levels and the incidence and severity of several respiratory diseases. FA causes inflammation in the respiratory tract via immunological activation, oxidative stress, and airway remodelling, aggravating pre-existing pulmonary inflammation and compromising lung function. Additionally, FA functions as a respiratory sensitizer, causing allergic responses and hypersensitivity pneumonitis in sensitive people. Understanding the complicated processes behind formaldehyde-induced lung inflammation is critical for directing targeted strategies aimed at minimizing environmental exposures and alleviating the burden of formaldehyde-related lung illnesses on global respiratory health. This abstract explores the intricate relationship between FA exposure and lung inflammatory diseases, including asthma, bronchitis, allergic inflammation, lung injury and pulmonary fibrosis.
Parkinson's Disease (PD) is a complex neurological illness that causes severe motor and non-motor symptoms due to a gradual loss of dopaminergic neurons in the substantia nigra. The aetiology of PD is influenced by a variety of genetic, environmental, and cellular variables. One important aspect of this pathophysiology is autophagy, a crucial cellular homeostasis process that breaks down and recycles cytoplasmic components. Recent advances in genomic technologies have unravelled a significant impact of ncRNAs on the regulation of autophagy pathways, thereby implicating their roles in PD onset and progression. They are members of a family of RNAs that include miRNAs, circRNA and lncRNAs that have been shown to play novel pleiotropic functions in the pathogenesis of PD by modulating the expression of genes linked to autophagic activities and dopaminergic neuron survival. This review aims to integrate the current genetic paradigms with the therapeutic prospect of autophagy-associated ncRNAs in PD. By synthesizing the findings of recent genetic studies, we underscore the importance of ncRNAs in the regulation of autophagy, how they are dysregulated in PD, and how they represent novel dimensions for therapeutic intervention. The therapeutic promise of targeting ncRNAs in PD is discussed, including the barriers that need to be overcome and future directions that must be embraced to funnel these ncRNA molecules for the treatment and management of PD.