High blood sugar is a defining feature of chronic disease, diabetes mellitus (DM). There are numerous commercially available medications for the treatment of DM. However, managing the patient's glucose levels remain a challenge because of the gradual reduction in beta-cell function and some side effects from the long-term use of various medications. Previous research has shown that the phenolic compound of henna plant (Lawsonia inermis L.) has the potential as anti-diabetic agent since it is able to suppress the digesting of α-amylase enzyme. In these studies, the plant' phenolic compounds have been isolated and characterized using UV, IR, NMR and LC-MS methods. Furthermore, the compound interaction into the active site of the α-amylase enzyme has been analyzed using molecular docking and molecular dynamics, as well as into α-glucosidase enzyme for predicting of the affinities. The results showed that isolated compound has the molecular formula of C15H10O6 with eleven degrees of unsaturation (DBE; double bond equivalence). The DBE value corresponds to the structure of the luteolin compound having an aromatic ring (8), a carbonyl group on the side chain (1) and a ketone ring with (2). The interaction study of the isolated compound with α-amylase and α-glucosidase enzyme using molecular docking compared to the positive control (acarbose) gave binding energy of -8.03 and -8.95 kcal/mol, respectively. The molecular dynamics simulation using the MM-PBSA method, complex stability based on solvent accessible surface area (SASA), root mean square deviation (RMSD), and root mean square fluctuation (RMSF) revealed that the compound has a high affinity for receptors. The characteristics of skin permeability, absorption, and distribution using ADME-Tox model were also well predicted. The results indicate that the phenolic compound isolated from L. inermis leaf was luteolin and it has the potential as an anti-diabetic agent.Communicated by Ramaswamy H. Sarma.
The mountains of Borneo are well known for their high endemicity and historical role in preserving Southeast Asian rainforest biodiversity, but the diversification of populations inhabiting these mountains is poorly studied. Here we examine the genetic structure of 12 Bornean montane passerines by comparing complete mtDNA ND2 gene sequences of populations spanning the island. Maximum likelihood and Bayesian phylogenetic trees and haplotype networks are examined for common patterns that might signal important historical events or boundaries to dispersal. Morphological and ecological characteristics of each species are also examined using phylogenetic generalized least-squares (PGLS) for correlation with population structure. Populations in only four of the 12 species are subdivided into distinct clades or haplotype groups. Although this subdivision occurred at about the same time in each species (ca. 0.6-0.7Ma), the spatial positioning of the genetic break differs among the species. In two species, northeastern populations are genetically divergent from populations elsewhere on the island. In the other two species, populations in the main Bornean mountain chain, including the northeast, are distinct from those on two isolated peaks in northwestern Borneo. We suggest different historical forces played a role in shaping these two distributions, despite commonality in timing. PGLS analysis showed that only a single characteristic-hand-wing index-is correlated with population structure. Birds with longer wings, and hence potentially more dispersal power, have less population structure. To understand historical forces influencing montane population structure on Borneo, future studies must compare populations across the entirety of Sundaland.
There are few empirical data, particularly collected simultaneously from multiple sites, on extinctions resulting from human-driven land-use change. Southeast Asia has the highest deforestation rate in the world, but the resulting losses of biological diversity remain poorly documented. Between November 2006 and March 2008, we conducted bird surveys on six landbridge islands in Malaysia and Indonesia. These islands were surveyed previously for birds in the early 1900 s, when they were extensively forested. Our bird inventories of the islands were nearly complete, as indicated by sampling saturation curves and nonparametric true richness estimators. From zero (Pulau Malawali and Pulau Mantanani) to 15 (Pulau Bintan) diurnal resident landbird species were apparently extirpated since the early 1900 s. Adding comparable but published extinction data from Singapore to our regression analyses, we found there were proportionally fewer forest bird extinctions in areas with greater remaining forest cover. Nevertheless, the statistical evidence to support this relationship was weak, owing to our unavoidably small sample size. Bird species that are restricted to the Indomalayan region, lay few eggs, are heavier, and occupy a narrower habitat breadth, were most vulnerable to extinction on Pulau Bintan. This was the only island where sufficient data existed to analyze the correlates of extinction. Forest preservation and restoration are needed on these islands to conserve the remaining forest avifauna. Our study of landbridge islands indicates that deforestation may increasingly threaten Southeast Asian biodiversity.
Xeroderma pigmentosum (XP) is a rare autosomal recessive disease characterized by hypersensitivity of the skin to ultraviolet radiation and other carcinogenic agents. This ailment is characterized by increased photosensitivity, skin xerosis, early skin aging, actinic keratosis, erythematous lesions, and hyperpigmentation macules. In this serial case report, we presented four cases with XP from two families in Indonesia. Both families were referred from rural referral health centers, and each family has two affected siblings. They had freckle-like pigmentation on the face, trunk, and extremities, which progressed since childhood. One patient of family 2 died because of an infectious disease. Histopathological examination using cytokeratine (CK), CD10, and Ber-EP4 staining from available tissue biopsy of one affected case of family 1 identified basal cell carcinoma (BCC) on the cheek and melanoma on the right eye. Mutation analysis found ERCC2, c2047C>T and XPC, c1941T>A in the first and second families, respectively. We suppose that this is the first case report of XP in Indonesia that incorporates clinical examination, genetic analysis, and extensive histopathological examination, including immunohistochemistry staining, and a novel pathogenic variant of XPC was found in the second family.
Beta-thalassaemia major is an autosomal recessive disorder that results in severe microcytic, hypochromic, haemolytic anaemia among affected patients. Beta-thalassaemia has emerged as one of the most common public health problems in Malaysia, particularly among Malaysian Chinese and Malays. This study aimed to observe the spectrum of mutations found in Kelantan Malay beta-thalassaemia major patients who attended the Paediatrics Daycare Unit, Hospital Universiti Sains Malaysia, Kelantan, Malaysia, the data of which was being used in establishing the prenatal diagnosis in this Human Genome Centre.