Displaying all 7 publications

Abstract:
Sort:
  1. Rothan HA, Amini E, Faraj FL, Golpich M, Teoh TC, Gholami K, et al.
    Sci Rep, 2017 03 30;7:45540.
    PMID: 28358047 DOI: 10.1038/srep45540
    N-methyl-D-aspartate receptors (NMDAR) play a central role in epileptogensis and NMDAR antagonists have been shown to have antiepileptic effects in animals and humans. Despite significant progress in the development of antiepileptic therapies over the previous 3 decades, a need still exists for novel therapies. We screened an in-house library of small molecules targeting the NMDA receptor. A novel indolyl compound, 2-(1,1-Dimethyl-1,3-dihydro-benzo[e]indol-2-ylidene)-malonaldehyde, (DDBM) showed the best binding with the NMDA receptor and computational docking data showed that DDBM antagonised the binding sites of the NMDA receptor at lower docking energies compared to other molecules. Using a rat electroconvulsive shock (ECS) model of epilepsy we showed that DDBM decreased seizure duration and improved the histological outcomes. Our data show for the first time that indolyls like DDBM have robust anticonvulsive activity and have the potential to be developed as novel anticonvulsants.
  2. Hajiaghaalipour F, Faraj FL, Bagheri E, Ali HM, Abdulla MA, Majid NA
    Curr Pharm Des, 2017;23(41):6358-6365.
    PMID: 28325143 DOI: 10.2174/1381612823666170321093345
    BACKGROUND: Colorectal cancer is the third most common form of cancer in both men and women around the world. The chemistry and biological study of heterocyclic compounds have been an interesting area for a long time in pharmaceutical and medicinal chemistry.

    METHODS: A new synthetic compound, 2-(1,1-dimethyl-1H-benzo[e]indol-2-yl)-3-((2-hydroxyphenyl)amino) acrylaldehyde, abbreviated as DBID, was prepared through the reaction of 2-(diformylmethylidene)-1,1- dimethylbenzo[e]indole with 2-aminophenol. The chemical structure of the synthesized compound was characterized by 1H NMR, 13C NMR and APT-NMR spectroscopy and confirmed by elemental analysis (CHN). The compound was screened for the antiproliferation effect against colorectal cancer cell line, HCT 116 and its possible mechanism of action was elucidated. To determine the IC50 value, the MTT assay was used and its apoptosisinducing effect was investigated.

    RESULTS: DBID inhibited the proliferation of HCT 116 cells with an IC50 of 9.32 µg/ml and significantly increased the levels of caspase -8, -9 and -3/7 in the treated cells compared to untreated cells. Apoptosis features in HCT 116 cell was detected in treated cells by using the AO/PI staining that confirmed that the cells had undergone remarkable morphological changes in apoptotic bodies. Furthermore, this changes in expression of caspase -8, -9 and -3 were confirmed by gene and protein quantification using RT-PCR and western blot analysis, respectively.

    CONCLUSION: The current study showed that the DBID compound has demonstrated chemotherapeutic activity which was evidenced by significant increases in the expression and activation of caspase and exploit the apoptotic signaling pathways to trigger cancer cell death.

  3. Sukumaran SD, Faraj FL, Lee VS, Othman R, Buckle MJC
    RSC Adv, 2018 Feb 14;8(14):7818-7831.
    PMID: 35539141 DOI: 10.1039/c7ra11872d
    A series of 2-aryl-3-(arylideneamino)-1,2-dihydroquinazoline-4(3H)-ones were evaluated as inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and self-induced β-amyloid (Aβ) aggregation. All the compounds were found to inhibit both forms of cholinesterase (IC50 in the range 4-32 μM) with some selectivity for BuChE. Most of the compounds also showed self-induced Aβ aggregation inhibitory activities, which were comparable or higher than those obtained for reference compounds, curcumin and myricetin. Docking and molecular dynamics (MD) simulation experiments suggested that the compounds are able to disrupt the dimer form of Aβ.
  4. Faraj FL, Zahedifard M, Paydar M, Looi CY, Abdul Majid N, Ali HM, et al.
    ScientificWorldJournal, 2014;2014:212096.
    PMID: 25548779 DOI: 10.1155/2014/212096
    Two new synthesized and characterized quinazoline Schiff bases 1 and 2 were investigated for anticancer activity against MCF-7 human breast cancer cell line. Compounds 1 and 2 demonstrated a remarkable antiproliferative effect, with an IC50 value of 6.246×10(-6) mol/L and 5.910×10(-6) mol/L, respectively, after 72 hours of treatment. Most apoptosis morphological features in treated MCF-7 cells were observed by AO/PI staining. The results of cell cycle analysis indicate that compounds did not induce S and M phase arrest in cell after 24 hours of treatment. Furthermore, MCF-7 cells treated with 1 and 2 subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome c release as well as increase in ROS formation. We also found activation of caspases-3/7, -8, and -9 in compounds 1 and 2. Moreover, inhibition of NF-κB translocation in MCF-7 cells treated by compound 1 significantly exhibited the association of extrinsic apoptosis pathway. Acute toxicity results demonstrated the nontoxic nature of the compounds in mice. Our results showed significant activity towards MCF-7 cells via either intrinsic or extrinsic mitochondrial pathway and are potential candidate for further in vivo and clinical breast cancer studies.
  5. Zahedifard M, Faraj FL, Paydar M, Yeng Looi C, Hajrezaei M, Hasanpourghadi M, et al.
    Sci Rep, 2015 Jun 25;5:11544.
    PMID: 26108872 DOI: 10.1038/srep11544
    The current study investigated the cytotoxic effect of 3-(5-chloro-2-hydroxybenzylideneamino)-2-(5-chloro-2-hydroxyphenyl)-2,3-dihydroquinazolin-41(H)-one (A) and 3-(5-nitro-2-hydroxybenzylideneamino)-2-(5-nitro-2-hydroxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (B) on MCF-7, MDA-MB-231, MCF-10A and WRL-68 cells. The mechanism involved in apoptosis was assessed to evaluate the possible pathways induced by compound A and B. MTT assay results using A and B showed significant inhibition of MCF-7 cell viability, with IC50 values of 3. 27 ± 0.171 and 4.36 ± 0.219 μg/mL, respectively, after a 72 hour treatment period. Compound A and B did not demonstrate significant cytotoxic effects towards MDA-MB-231, WRL-68 and MCF-10A cells. Acute toxicity tests also revealed an absence of toxic effects on mice. Fluorescent microscopic studies confirmed distinct morphological changes (membrane blebbing and chromosome condensation) corresponding to typical apoptotic features in treated MCF-7 cells. Using Cellomics High Content Screening (HCS), we found that compound A and B could trigger the release of cytochrome c from mitochondria to the cytosol. The release of cytochrome c activated the expression of caspases-9 and then stimulated downstream executioner caspase-3/7. In addition, caspase-8 showed remarkable activity, followed by inhibition of NF-κB activation in A-and B-treated MCF-7 cells. The results indicated that A and B could induce apoptosis via a mechanism that involves either extrinsic or intrinsic pathways.
  6. Bagheri E, Saremi K, Hajiaghaalipour F, Faraj FL, Ali HM, Abdulla MA, et al.
    Curr Pharm Des, 2018;24(13):1395-1404.
    PMID: 29384057 DOI: 10.2174/1381612824666180130124308
    Quinazoline is an aromatic bicyclic compound exhibiting several pharmaceutical and biological activities. This study was conducted to investigate the potential wound healing properties of Synthetic Quinazoline Compound (SQC) on experimental rats. The toxicity of SQC was determined by MTT cell proliferation assay. The healing effect of SQC was assessed by in vitro wound healing scratch assay on the skin fibroblast cells (BJ-5ta) and in vivo wound healing experiment of low and high dose of SQC on adult Sprague-Dawley rats compared with negative (gum acacia) and positive control (Intrasite-gel). Hematoxylin and Eosin (H&E), Masson's Trichrome (MT) staining and immunohistochemistry analysis were performed to evaluate the histopathological alterations and proteins expression of Bax and Hsp70 on the wound tissue after 10 days. In addition, levels of antioxidant enzymes (catalase, glutathione peroxidase and superoxide dismutase), and malondialdehyde (MDA) were measured in wound tissue homogenates. The SQC significantly enhanced BJ-5ta cell proliferation and accelerated the percentage of wound closure, with less scarring, increased fibroblast and collagen fibers and less inflammatory cells compared with the negative control. The compound also increases endogenous enzymes and decline lipid peroxidation in wound homogenate.
  7. Zahedifard M, Faraj FL, Paydar M, Looi CY, Hasandarvish P, Hajrezaie M, et al.
    Curr Pharm Des, 2015;21(23):3417-26.
    PMID: 25808938
    The anti-carcinogenic effect of the new quinazolinone compound, named MMD, was tested on MCF-7 human breast cancer cell line. The synthesis of quinazolinone-based compounds attracted strong attention over the past few decades as an alternative mean to produce analogues of natural products. Quinazolinone compounds sharing the main principal core structures are currently introduced in the clinical trials and pharmaceutical markets as anti-cancer agents. Thus, it is of high clinical interest to identify a new drug that could be used to control the growth and expansion of cancer cells. Quinazolinone is a metabolite derivative resulting from the conjugation of 2-aminobenzoyhydrazide and 5-methoxy-2- hydroxybenzaldehyde based on condensation reactions. In the present study, we analysed the influence of MMD on breast cancer adenoma cell morphology, cell cycle arrest, DNA fragmentation, cytochrome c release and caspases activity. MCF-7 is a type of cell line representing the breast cancer adenoma cells that can be expanded and differentiated in culture. Using different in vitro strategies and specific antibodies, we demonstrate a novel role for MMD in the inhibition of cell proliferation and initiation of the programmed cell death. MMD was found to increase cytochrome c release from the mitochondria to the cytosol and this effect was enhanced over time with effective IC50 value of 5.85 ± 0.71 μg/mL detected in a 72-hours treatment. Additionally, MMD induced cell cycle arrest at G0/G1 phase and caused DNA fragmentation with obvious activation of caspase-9 and caspases-3/7. Our results demonstrate a novel role of MMD as an anti-proliferative agent and imply the involvement of mitochondrial intrinsic pathway in the observed apoptosis.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links